Limitation of logical space puts restrictions on the explication of the notions of knowledge, belief, necessity and truth
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F19%3A00118736" target="_blank" >RIV/00216224:14210/19:00118736 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14210/19:00113996
Výsledek na webu
<a href="https://sites.google.com/view/trendsinlogic2019/%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F?authuser=0" target="_blank" >https://sites.google.com/view/trendsinlogic2019/%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F?authuser=0</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Limitation of logical space puts restrictions on the explication of the notions of knowledge, belief, necessity and truth
Popis výsledku v původním jazyce
I demonstrate that (i) the limitation of logical space (entailed by Cantor's theorem) imposes (ii) limits to the explication of certain important 'propositional' ('intentional') notions, e.g. knowledge. A naive approach to the limitations of both types leads to a group of famous paradoxes, e.g. the Liar Paradox, the Knower paradox. I establish some theorems related to (i) and (ii), partly utilising the paradoxes. They demonstrate similarities and also dissimilarities between the notions of knowledge, necessity, truth, belief and assertion. Unlike Montague, who treated the notions as predicates applied to coding numbers of formulas, I treat them as applied to hyperintensional, fine-grained meanings of sentences. The logical framework employed is a ramified version of (a Church-like) simple theory of types.
Název v anglickém jazyce
Limitation of logical space puts restrictions on the explication of the notions of knowledge, belief, necessity and truth
Popis výsledku anglicky
I demonstrate that (i) the limitation of logical space (entailed by Cantor's theorem) imposes (ii) limits to the explication of certain important 'propositional' ('intentional') notions, e.g. knowledge. A naive approach to the limitations of both types leads to a group of famous paradoxes, e.g. the Liar Paradox, the Knower paradox. I establish some theorems related to (i) and (ii), partly utilising the paradoxes. They demonstrate similarities and also dissimilarities between the notions of knowledge, necessity, truth, belief and assertion. Unlike Montague, who treated the notions as predicates applied to coding numbers of formulas, I treat them as applied to hyperintensional, fine-grained meanings of sentences. The logical framework employed is a ramified version of (a Church-like) simple theory of types.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-12420S" target="_blank" >GA19-12420S: Hyperintenzionální význam, teorie typů a logická dedukce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů