Automatic feedback on pronunciation and Anophone – a tool for L2 Czech annotation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F23%3A00132012" target="_blank" >RIV/00216224:14210/23:00132012 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic feedback on pronunciation and Anophone – a tool for L2 Czech annotation
Popis výsledku v původním jazyce
This paper introduces a research project that represents an innovative approach to e-learning applications targeting automatic feedback on the pronunciation of non-native speakers based on computer speech recognition (specifically for Czech). We have collected data from 187 speakers of different pronunciation levels from 36 languages, conducted a pilot project, and developed the first version of an attributive annotation system based on tagging isolated speech sounds. We briefly mention the results of this stage (especially the success rate of the trained model), which led us to change our strategy and move to the next phase of the development of the automatic speech recognition tool. In this article, we present the current and next project phases: theA nophone annotation tool, a new annotation system based on whole-word tagging (two- to four-syllable words). The result is a measurable improvement in both the model and the success rate of speech recognition.
Název v anglickém jazyce
Automatic feedback on pronunciation and Anophone – a tool for L2 Czech annotation
Popis výsledku anglicky
This paper introduces a research project that represents an innovative approach to e-learning applications targeting automatic feedback on the pronunciation of non-native speakers based on computer speech recognition (specifically for Czech). We have collected data from 187 speakers of different pronunciation levels from 36 languages, conducted a pilot project, and developed the first version of an attributive annotation system based on tagging isolated speech sounds. We briefly mention the results of this stage (especially the success rate of the trained model), which led us to change our strategy and move to the next phase of the development of the automatic speech recognition tool. In this article, we present the current and next project phases: theA nophone annotation tool, a new annotation system based on whole-word tagging (two- to four-syllable words). The result is a measurable improvement in both the model and the success rate of speech recognition.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
60203 - Linguistics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů