Mechanism of Proton Transfer in Short Protonated Oligopeptides. 1. N-Methylacetamide and N2-Acetyl-N1-methylglycinamide
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F03%3A00008940" target="_blank" >RIV/00216224:14310/03:00008940 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanism of Proton Transfer in Short Protonated Oligopeptides. 1. N-Methylacetamide and N2-Acetyl-N1-methylglycinamide
Popis výsledku v původním jazyce
A study of proton transfer in models of a single peptide unit (N-methylacetamide) and diamide (N2-acetyl-N1-methylglycinamide) as well as the influence of a single water molecule on proton transfer is presented here. Three proton pathways in protonated N-methylacetamide are considered: isomerization, inversion, and 1,3-proton shift. The isomerization step exhibits the lowest energy barrier. When a single water molecule was added, no significant influence on proton isomerization was observed. In the diamide model, the isomerization-jump mechanism of proton transfer along diamide carbonyl oxygens was inspected, and the proton isomerization steps were found to be the most energy-demanding processes (~17 kcal mol-1). The presence of a single water moleculeleads to a different, lower-energy-barrier proton-transfer mechanism with proton exchange. The highest energy barrier is only 7.6 kcal mol-1. Possible competing pathways are also discussed.
Název v anglickém jazyce
Mechanism of Proton Transfer in Short Protonated Oligopeptides. 1. N-Methylacetamide and N2-Acetyl-N1-methylglycinamide
Popis výsledku anglicky
A study of proton transfer in models of a single peptide unit (N-methylacetamide) and diamide (N2-acetyl-N1-methylglycinamide) as well as the influence of a single water molecule on proton transfer is presented here. Three proton pathways in protonated N-methylacetamide are considered: isomerization, inversion, and 1,3-proton shift. The isomerization step exhibits the lowest energy barrier. When a single water molecule was added, no significant influence on proton isomerization was observed. In the diamide model, the isomerization-jump mechanism of proton transfer along diamide carbonyl oxygens was inspected, and the proton isomerization steps were found to be the most energy-demanding processes (~17 kcal mol-1). The presence of a single water moleculeleads to a different, lower-energy-barrier proton-transfer mechanism with proton exchange. The highest energy barrier is only 7.6 kcal mol-1. Possible competing pathways are also discussed.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CH - Jaderná a kvantová chemie, fotochemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LN00A016" target="_blank" >LN00A016: BIOMOLEKULÁRNÍ CENTRUM</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
J. Phys. Chem. A
ISSN
1089-5639
e-ISSN
—
Svazek periodika
107
Číslo periodika v rámci svazku
30
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
5789-5797
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—