Diferenciální invarianty z vnoření variet s metrickými poli
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F04%3A00010215" target="_blank" >RIV/00216224:14310/04:00010215 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential Invariants of Immersions of Manifolds with Metric Fields
Popis výsledku v původním jazyce
The problem of finding all r-th order differential invariants of immersions of manifolds with metric fields, with values in a left (G^1_m x G^1_n)-manifold is formulated. For obtaining the basis of higher order differential invariants the orbit reductionmethod is used. As a new result it appears that r-th order differential invariants depending on an immersion f:M->N of manifolds M and N and on metric fields on them can be factorized through metrics, curvature tensors and their covariant derivatives upto the order (r-2), and covariant differentials of the tangent mapping Tf up to the order r. The concept of a covariant differential Tf is also introduced in this paper. The obtained results are geometrically interpreted as well.
Název v anglickém jazyce
Differential Invariants of Immersions of Manifolds with Metric Fields
Popis výsledku anglicky
The problem of finding all r-th order differential invariants of immersions of manifolds with metric fields, with values in a left (G^1_m x G^1_n)-manifold is formulated. For obtaining the basis of higher order differential invariants the orbit reductionmethod is used. As a new result it appears that r-th order differential invariants depending on an immersion f:M->N of manifolds M and N and on metric fields on them can be factorized through metrics, curvature tensors and their covariant derivatives upto the order (r-2), and covariant differentials of the tangent mapping Tf up to the order r. The concept of a covariant differential Tf is also introduced in this paper. The obtained results are geometrically interpreted as well.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F03%2F0512" target="_blank" >GA201/03/0512: Geometrická analýza a její aplikace ve fyzice</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Svazek periodika
249
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
319-329
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—