Přirozené konexe indukované obecnou lineární a klasickou konexí
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F05%3A00012908" target="_blank" >RIV/00216224:14310/05:00012908 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Natural connections given by general linear and classical connections
Popis výsledku v původním jazyce
We assume a vector bundle $p:f Eto f M$ with a general linear connection $K$ and a classical linear connection $Lam$ on $f M$. We prove that all classical linear connections on the total space $f E$ naturally given by $(Lam, K)$ form a 15-parameter family. Further we prove that all connections on $J^1f E$ naturally given by $(Lam, K)$ form a 14-parameter family. Both families of connections are described geometrically.
Název v anglickém jazyce
Natural connections given by general linear and classical connections
Popis výsledku anglicky
We assume a vector bundle $p:f Eto f M$ with a general linear connection $K$ and a classical linear connection $Lam$ on $f M$. We prove that all classical linear connections on the total space $f E$ naturally given by $(Lam, K)$ form a 15-parameter family. Further we prove that all connections on $J^1f E$ naturally given by $(Lam, K)$ form a 14-parameter family. Both families of connections are described geometrically.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F02%2F0225" target="_blank" >GA201/02/0225: Prodlužování geometrických struktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Differential Geometry and its Application
ISBN
80-86732-63-0
ISSN
—
e-ISSN
—
Počet stran výsledku
15
Strana od-do
289-303
Název nakladatele
MATFYZ PRESS
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
1. 1. 2004
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—