Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bifurcation diagram of a cubic three-parameter autonomous system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F05%3A00031580" target="_blank" >RIV/00216224:14310/05:00031580 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bifurcation diagram of a cubic three-parameter autonomous system

  • Popis výsledku v původním jazyce

    We study a cubic three-parameter autonomous planar system. Our goal is to obtain a bifurcation diagram; i.e., to divide the parameter space into regions within which the system has topologically equivalent phase portraits and to describe how these portraits are transformed at the bifurcation boundaries. Results may be applied to the macroeconomical model IS-LM with Kaldors assumptions. In this model existence of a stable limit cycles has already been studied (Andronov-Hopf bifurcation). We present the whole bifurcation diagram and among others, we prove existence of more difficult bifurcations and existence of unstable cycles.

  • Název v anglickém jazyce

    Bifurcation diagram of a cubic three-parameter autonomous system

  • Popis výsledku anglicky

    We study a cubic three-parameter autonomous planar system. Our goal is to obtain a bifurcation diagram; i.e., to divide the parameter space into regions within which the system has topologically equivalent phase portraits and to describe how these portraits are transformed at the bifurcation boundaries. Results may be applied to the macroeconomical model IS-LM with Kaldors assumptions. In this model existence of a stable limit cycles has already been studied (Andronov-Hopf bifurcation). We present the whole bifurcation diagram and among others, we prove existence of more difficult bifurcations and existence of unstable cycles.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2005

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electron. J. Diff. Eqs.

  • ISSN

    1072-6691

  • e-ISSN

  • Svazek periodika

    2005

  • Číslo periodika v rámci svazku

    No. 83

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus