Nelineární limit-point / limit-circle problém.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F06%3A00016565" target="_blank" >RIV/00216224:14310/06:00016565 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The nonlinear limit-point/limit-circle problem
Popis výsledku v původním jazyce
First posed by H.Weyl in 1910, the limit-point/limit-circle problem has inspired, over the last century, several new developments in the asymptotic analysis of nonlinear differential equations. The book opens with a discussion of the problem in the linear case, as H.Weyl originally stated it, and then proceeds to a generalization for nonlinear higher order equations. En route, the authors distill the classical theorems for second and higher-order linear equations, and carefully map the progression to nonlinear limit-point results. The relationship between the limit-point/limit-circle properties and the boundedness, oscillation, and convergence of solutions is explored, and the connection between limit-point/limit-circle problems and spectral theory isexamined in detail. With over 120 references, many open problems, and illustrative examples, this work will be valuable to graduate students and researchers in differential equations, functional analysis, and related fields.
Název v anglickém jazyce
The nonlinear limit-point/limit-circle problem
Popis výsledku anglicky
First posed by H.Weyl in 1910, the limit-point/limit-circle problem has inspired, over the last century, several new developments in the asymptotic analysis of nonlinear differential equations. The book opens with a discussion of the problem in the linear case, as H.Weyl originally stated it, and then proceeds to a generalization for nonlinear higher order equations. En route, the authors distill the classical theorems for second and higher-order linear equations, and carefully map the progression to nonlinear limit-point results. The relationship between the limit-point/limit-circle properties and the boundedness, oscillation, and convergence of solutions is explored, and the connection between limit-point/limit-circle problems and spectral theory isexamined in detail. With over 120 references, many open problems, and illustrative examples, this work will be valuable to graduate students and researchers in differential equations, functional analysis, and related fields.
Klasifikace
Druh
B - Odborná kniha
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
0-8176-3562-9
Počet stran knihy
175
Název nakladatele
Birkhauser
Místo vydání
Boston
Kód UT WoS knihy
—