Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dichotomie složitostí problemů řešení systemů rovnic nad konečnými pologrupami

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F07%3A00022898" target="_blank" >RIV/00216224:14310/07:00022898 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dichotomies in the Complexity of Solving Systems of Equations over Finite Semigroups

  • Popis výsledku v původním jazyce

    We consider the problem of testing whether a given system of equation over a fixed finite semigroup S has a solution. For the case where S is a monoid, we prove that the problem is computable in polynomial time when S is commutative and is the union of its subgoups but is NP-complete otherwise. When S is a monoid ar regular semigroup, we obtain similar dichotomies for the restricted version of the problem where no variable occurs on the right-hand side of each equation. We stress conections between these problems and constraint satisfaction problems. In particular, for any finite domain D and any finite set of relations T over D, we construct a finite semigroup S(T) such that CSP(T) is polynomial-time equivalent to the equation satisfiability problem over S(T).

  • Název v anglickém jazyce

    Dichotomies in the Complexity of Solving Systems of Equations over Finite Semigroups

  • Popis výsledku anglicky

    We consider the problem of testing whether a given system of equation over a fixed finite semigroup S has a solution. For the case where S is a monoid, we prove that the problem is computable in polynomial time when S is commutative and is the union of its subgoups but is NP-complete otherwise. When S is a monoid ar regular semigroup, we obtain similar dichotomies for the restricted version of the problem where no variable occurs on the right-hand side of each equation. We stress conections between these problems and constraint satisfaction problems. In particular, for any finite domain D and any finite set of relations T over D, we construct a finite semigroup S(T) such that CSP(T) is polynomial-time equivalent to the equation satisfiability problem over S(T).

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theory of Computing Systems

  • ISSN

    1432-4350

  • e-ISSN

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    35

  • Strana od-do

    263-297

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus