Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Simplical depth estimators and tests in examples from shape analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00061100" target="_blank" >RIV/00216224:14310/08:00061100 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Simplical depth estimators and tests in examples from shape analysis

  • Popis výsledku v původním jazyce

    In this paper we present the maximum simplicial depth estimator and compare it to the ordinary least square estimator in examples from 2D and 3D shape analysis focusing on bivariate and multivariate allometrical problems from zoology and biological anthropology. We compare two types of estimators derived under different subsets of parametric space on the basis of the linear regression model, theta = (theta1, theta2)T in R2 and theta = (theta1, theta2, theta3)T in R3, where theta3 = 0. We also discuss monotonically decreasing linear regression models in special situations. In applications where outliers in x- or y-axis direction occur in the data and residuals from ordinary least-square linear regression model are not normally distributed, we recommendthe use of the maximum simplicial depth estimators.

  • Název v anglickém jazyce

    Simplical depth estimators and tests in examples from shape analysis

  • Popis výsledku anglicky

    In this paper we present the maximum simplicial depth estimator and compare it to the ordinary least square estimator in examples from 2D and 3D shape analysis focusing on bivariate and multivariate allometrical problems from zoology and biological anthropology. We compare two types of estimators derived under different subsets of parametric space on the basis of the linear regression model, theta = (theta1, theta2)T in R2 and theta = (theta1, theta2, theta3)T in R3, where theta3 = 0. We also discuss monotonically decreasing linear regression models in special situations. In applications where outliers in x- or y-axis direction occur in the data and residuals from ordinary least-square linear regression model are not normally distributed, we recommendthe use of the maximum simplicial depth estimators.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Tatra Mountains Mathematical Publications

  • ISSN

    1210-3195

  • e-ISSN

  • Svazek periodika

    39

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    10

  • Strana od-do

    95-104

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus