Holonomy of supermanifolds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00035578" target="_blank" >RIV/00216224:14310/09:00035578 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Holonomy of supermanifolds
Popis výsledku v původním jazyce
Holonomy groups and holonomy algebras for connections on locally free sheaves over supermanifolds are introduced. A one-to-one correspondence between parallel sections and holonomy-invariant vectors, and a one-to-one correspondence between parallel locally direct subsheaves and holonomy-invariant vector supersubspaces are obtained. As the special case, the holonomy of linear connections on supermanifolds is studied. Examples of parallel geometric structures on supermanifolds and the corresponding holonomies are given. For Riemannian supermanifolds an analog of the Wu theorem is proved. Berger superalgebras are defined and their examples are given.
Název v anglickém jazyce
Holonomy of supermanifolds
Popis výsledku anglicky
Holonomy groups and holonomy algebras for connections on locally free sheaves over supermanifolds are introduced. A one-to-one correspondence between parallel sections and holonomy-invariant vectors, and a one-to-one correspondence between parallel locally direct subsheaves and holonomy-invariant vector supersubspaces are obtained. As the special case, the holonomy of linear connections on supermanifolds is studied. Examples of parallel geometric structures on supermanifolds and the corresponding holonomies are given. For Riemannian supermanifolds an analog of the Wu theorem is proved. Berger superalgebras are defined and their examples are given.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC505" target="_blank" >LC505: Centrum Eduarda Čecha pro algebru a geometrii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ISSN
0025-5858
e-ISSN
—
Svazek periodika
79/2009
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
32
Strana od-do
—
Kód UT WoS článku
000266035600005
EID výsledku v databázi Scopus
—