Artificial neural networks combined with experimental design: a ?soft? approach for chemical kinetics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00059296" target="_blank" >RIV/00216224:14310/12:00059296 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.talanta.2012.01.044" target="_blank" >http://dx.doi.org/10.1016/j.talanta.2012.01.044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.talanta.2012.01.044" target="_blank" >10.1016/j.talanta.2012.01.044</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial neural networks combined with experimental design: a ?soft? approach for chemical kinetics
Popis výsledku v původním jazyce
The possibilities of artificial neural networks (ANNs) ?soft? computing to evaluate chemical kinetic data have been studied. In the first stage, , a set of ?standard? kinetic curves with known parameters (rate constants and/or concentrations of the reactants), which is some kind of ?normalized maps?, is prepared. The data base should be built according to a suitable experimental design (ED). In the second stage, such data set is then used for ANNs ?learning?. Afterwards, in the second stage, experimental data are evaluated and parameters of ?other? kinetic curves are computed without solving anymore the system of differential equations. The combined ED-ANNs approach has been applied to solve several kinetic systems. It was also demonstrated that usingANNs, the optimization of complex chemical systems can be achieved even not knowing or determining the values of the rate constants. Moreover, the solution of differential equations is here not necessary, as well.
Název v anglickém jazyce
Artificial neural networks combined with experimental design: a ?soft? approach for chemical kinetics
Popis výsledku anglicky
The possibilities of artificial neural networks (ANNs) ?soft? computing to evaluate chemical kinetic data have been studied. In the first stage, , a set of ?standard? kinetic curves with known parameters (rate constants and/or concentrations of the reactants), which is some kind of ?normalized maps?, is prepared. The data base should be built according to a suitable experimental design (ED). In the second stage, such data set is then used for ANNs ?learning?. Afterwards, in the second stage, experimental data are evaluated and parameters of ?other? kinetic curves are computed without solving anymore the system of differential equations. The combined ED-ANNs approach has been applied to solve several kinetic systems. It was also demonstrated that usingANNs, the optimization of complex chemical systems can be achieved even not knowing or determining the values of the rate constants. Moreover, the solution of differential equations is here not necessary, as well.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CB - Analytická chemie, separace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Talanta
ISSN
0039-9140
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
MAY
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
72-78
Kód UT WoS článku
000303305700010
EID výsledku v databázi Scopus
—