Hyperspectral imaging based method for fast characterization of kidney stone types
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00107018" target="_blank" >RIV/00216224:14310/12:00107018 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-17/issue-7/076027/Hyperspectral-imaging-based-method-for-fast-characterization-of-kidney-stone/10.1117/1.JBO.17.7.076027.full?SSO=1" target="_blank" >https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-17/issue-7/076027/Hyperspectral-imaging-based-method-for-fast-characterization-of-kidney-stone/10.1117/1.JBO.17.7.076027.full?SSO=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/1.JBO.17.7.076027" target="_blank" >10.1117/1.JBO.17.7.076027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hyperspectral imaging based method for fast characterization of kidney stone types
Popis výsledku v původním jazyce
The formation of kidney stones is a common and highly studied disease, which causes intense pain and presents a high recidivism. In order to find the causes of this problem, the characterization of the main compounds is of great importance. In this sense, the analysis of the composition and structure of the stone can give key information about the urine parameters during the crystal growth. But the usual methods employed are slow, analyst dependent and the information obtained is poor. In the present work, the near infrared (NIR)-hyperspectral imaging technique was used for the analysis of 215 samples of kidney stones, including the main types usually found and their mixtures. The NIR reflectance spectra of the analyzed stones showed significant differences that were used for their classification. To do so, a method was created by the use of artificial neural networks, which showed a probability higher than 90% for right classification of the stones. The promising results, robust methodology, and the fast analytical process, without the need of an expert assistance, lead to an easy implementation at the clinical laboratories, offering the urologist a rapid diagnosis that shall contribute to minimize urolithiasis recidivism.
Název v anglickém jazyce
Hyperspectral imaging based method for fast characterization of kidney stone types
Popis výsledku anglicky
The formation of kidney stones is a common and highly studied disease, which causes intense pain and presents a high recidivism. In order to find the causes of this problem, the characterization of the main compounds is of great importance. In this sense, the analysis of the composition and structure of the stone can give key information about the urine parameters during the crystal growth. But the usual methods employed are slow, analyst dependent and the information obtained is poor. In the present work, the near infrared (NIR)-hyperspectral imaging technique was used for the analysis of 215 samples of kidney stones, including the main types usually found and their mixtures. The NIR reflectance spectra of the analyzed stones showed significant differences that were used for their classification. To do so, a method was created by the use of artificial neural networks, which showed a probability higher than 90% for right classification of the stones. The promising results, robust methodology, and the fast analytical process, without the need of an expert assistance, lead to an easy implementation at the clinical laboratories, offering the urologist a rapid diagnosis that shall contribute to minimize urolithiasis recidivism.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Biomedical Optics
ISSN
1083-3668
e-ISSN
1560-2281
Svazek periodika
17
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000307989500054
EID výsledku v databázi Scopus
2-s2.0-84873539080