Did we measure enough environmental variables? Insights from multiscale spatial analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00066716" target="_blank" >RIV/00216224:14310/13:00066716 - isvavai.cz</a>
Výsledek na webu
<a href="http://escholarship.org/uc%C3%BAfb" target="_blank" >http://escholarship.org/uc%C3%BAfb</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Did we measure enough environmental variables? Insights from multiscale spatial analysis
Popis výsledku v původním jazyce
Variation partitioning of species composition into components explained by environmental and spatial variables is often used to identify a signature of niche- and dispersal-based processes in community assembly. Such interpretation, however, strongly depends on the quality of available environmental data. Spatially structured variation not explained by environment (component [c]), which is believed to carry legacy of dispersal-based processes, contains unknown proportion of variation attributable to unmeasured environmental variables. We can never measure everything, but it is useful to know if we measured really too less or we are getting close to perfect. To evaluate this, we used multiscale spatial analysis of component [c], based on PCNM analysis.
Název v anglickém jazyce
Did we measure enough environmental variables? Insights from multiscale spatial analysis
Popis výsledku anglicky
Variation partitioning of species composition into components explained by environmental and spatial variables is often used to identify a signature of niche- and dispersal-based processes in community assembly. Such interpretation, however, strongly depends on the quality of available environmental data. Spatially structured variation not explained by environment (component [c]), which is believed to carry legacy of dispersal-based processes, contains unknown proportion of variation attributable to unmeasured environmental variables. We can never measure everything, but it is useful to know if we measured really too less or we are getting close to perfect. To evaluate this, we used multiscale spatial analysis of component [c], based on PCNM analysis.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
EH - Ekologie – společenstva
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP505%2F12%2F1022" target="_blank" >GAP505/12/1022: Beta diverzita rostlinných společenstev podél omezených ekologických gradientů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů