Development and validation of a general appoach to predict and quantify the synergism of anti-cancer drugs using experimental design and artificial neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00068012" target="_blank" >RIV/00216224:14310/13:00068012 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.talanta.2013.04.031" target="_blank" >http://dx.doi.org/10.1016/j.talanta.2013.04.031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.talanta.2013.04.031" target="_blank" >10.1016/j.talanta.2013.04.031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Development and validation of a general appoach to predict and quantify the synergism of anti-cancer drugs using experimental design and artificial neural networks
Popis výsledku v původním jazyce
The combination of two or more drugs using multidrug mixtures is a trend in the treatment of cancer. The goal is to search for a synergistic effect and thereby reduce the required dose and inhibit the development of resistance. An advanced model-free approach for data exploration and analysis, based on artificial neural networks (ANN) and experimental design is proposed to predict and quantify the synergism of drugs. The proposed method non-linearly correlates the concentrations of drugs with the cytotoxicity of the mixture, providing the possibility of choosing the optimal drug combination that gives the maximum synergism. The use of ANN allows for the prediction of the cytotoxicity of each combination of drugs in the chosen concentration interval. The method was validated by preparing and experimentally testing the combinations with the predicted highest synergistic effect. In all cases, the data predicted by the network were experimentally confirmed.
Název v anglickém jazyce
Development and validation of a general appoach to predict and quantify the synergism of anti-cancer drugs using experimental design and artificial neural networks
Popis výsledku anglicky
The combination of two or more drugs using multidrug mixtures is a trend in the treatment of cancer. The goal is to search for a synergistic effect and thereby reduce the required dose and inhibit the development of resistance. An advanced model-free approach for data exploration and analysis, based on artificial neural networks (ANN) and experimental design is proposed to predict and quantify the synergism of drugs. The proposed method non-linearly correlates the concentrations of drugs with the cytotoxicity of the mixture, providing the possibility of choosing the optimal drug combination that gives the maximum synergism. The use of ANN allows for the prediction of the cytotoxicity of each combination of drugs in the chosen concentration interval. The method was validated by preparing and experimentally testing the combinations with the predicted highest synergistic effect. In all cases, the data predicted by the network were experimentally confirmed.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CB - Analytická chemie, separace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Talanta
ISSN
0039-9140
e-ISSN
—
Svazek periodika
115
Číslo periodika v rámci svazku
2013
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
84-93
Kód UT WoS článku
000328095600012
EID výsledku v databázi Scopus
—