Variable-basis categorically-algebraic dualities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00078896" target="_blank" >RIV/00216224:14310/14:00078896 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.fie.2015.01.001" target="_blank" >http://dx.doi.org/10.1016/j.fie.2015.01.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fiae.2015.01.001" target="_blank" >10.1016/j.fiae.2015.01.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Variable-basis categorically-algebraic dualities
Popis výsledku v původním jazyce
The manuscript continues our study on developing a categorically-algebraic (catalg) analogue of the theory of natural dualities of D. Clark and B. Davey, which provides a machinery for obtaining topological representations of algebraic structures. The new setting differs from its predecessor in relying on catalg topology, introduced lately by the author as a new approach to topological structures, which incorporates the majority of both crisp and many-valued developments, ultimately erasing the border between them. Motivated by the variable-basis lattice-valued extension of the Stone representation theorems done by S. E. Rodabaugh, we have recently presented a catalg version of the Priestley duality for distributive lattices, which gave rise (as in theclassical case) to a fixed-basis variety-based approach to natural dualities. In this paper, we extend the theory to variable-basis, whose setting is completely different from the respective one of S. E.
Název v anglickém jazyce
Variable-basis categorically-algebraic dualities
Popis výsledku anglicky
The manuscript continues our study on developing a categorically-algebraic (catalg) analogue of the theory of natural dualities of D. Clark and B. Davey, which provides a machinery for obtaining topological representations of algebraic structures. The new setting differs from its predecessor in relying on catalg topology, introduced lately by the author as a new approach to topological structures, which incorporates the majority of both crisp and many-valued developments, ultimately erasing the border between them. Motivated by the variable-basis lattice-valued extension of the Stone representation theorems done by S. E. Rodabaugh, we have recently presented a catalg version of the Priestley duality for distributive lattices, which gave rise (as in theclassical case) to a fixed-basis variety-based approach to natural dualities. In this paper, we extend the theory to variable-basis, whose setting is completely different from the respective one of S. E.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraické metody v kvantové logice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fuzzy Information and Engineering
ISSN
1616-8658
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
33
Strana od-do
393-425
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—