Remotely Sensed Soil Data Analysis Using Artificial Neural Networks: A Case Study of El-Fayoum Depression, Egypt
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00114224" target="_blank" >RIV/00216224:14310/15:00114224 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/ijgi4020677" target="_blank" >https://doi.org/10.3390/ijgi4020677</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijgi4020677" target="_blank" >10.3390/ijgi4020677</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Remotely Sensed Soil Data Analysis Using Artificial Neural Networks: A Case Study of El-Fayoum Depression, Egypt
Popis výsledku v původním jazyce
Earth observation and monitoring of soil quality, long term changes of soil characteristics and deterioration processes such as degradation or desertification are among the most important objectives of remote sensing. The georeferenciation of such information contributes to the development and progress of the Digital Earth project in the framework of the information globalization process. Earth observation and soil quality monitoring via remote sensing are mostly based on the use of satellite spectral data. Advanced techniques are available to predict the soil or land use/cover categories from satellite imagery data. Artificial Neural Networks (ANNs) are among the most widely used tools for modeling and prediction purposes in various fields of science. The assessment of satellite image quality and suitability for analysing the soil conditions (e.g., soil classification, land use/cover estimation, etc.) is fundamental. In this paper, methodology for data screening and subsequent application of ANNs in remote sensing is presented. The first stage is achieved via: (i) elimination of outliers, (ii) data pre-processing and (iii) the determination of the number of distinguishable soil "classes" via Eigenvalues Analysis (EA) and Principal Components Analysis (PCA). The next stage of ANNs use consists of: (i) building the training database, (ii) optimization of ANN architecture and database cleaning, and (iii) training and verification of the network. Application of the proposed methodology is shown.
Název v anglickém jazyce
Remotely Sensed Soil Data Analysis Using Artificial Neural Networks: A Case Study of El-Fayoum Depression, Egypt
Popis výsledku anglicky
Earth observation and monitoring of soil quality, long term changes of soil characteristics and deterioration processes such as degradation or desertification are among the most important objectives of remote sensing. The georeferenciation of such information contributes to the development and progress of the Digital Earth project in the framework of the information globalization process. Earth observation and soil quality monitoring via remote sensing are mostly based on the use of satellite spectral data. Advanced techniques are available to predict the soil or land use/cover categories from satellite imagery data. Artificial Neural Networks (ANNs) are among the most widely used tools for modeling and prediction purposes in various fields of science. The assessment of satellite image quality and suitability for analysing the soil conditions (e.g., soil classification, land use/cover estimation, etc.) is fundamental. In this paper, methodology for data screening and subsequent application of ANNs in remote sensing is presented. The first stage is achieved via: (i) elimination of outliers, (ii) data pre-processing and (iii) the determination of the number of distinguishable soil "classes" via Eigenvalues Analysis (EA) and Principal Components Analysis (PCA). The next stage of ANNs use consists of: (i) building the training database, (ii) optimization of ANN architecture and database cleaning, and (iii) training and verification of the network. Application of the proposed methodology is shown.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ISPRS International Journal of Geo-Information
ISSN
2220-9964
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
677-696
Kód UT WoS článku
000358987600014
EID výsledku v databázi Scopus
2-s2.0-84948949282