Knowledge Discovery in Mega-Spectra Archives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00115925" target="_blank" >RIV/00216224:14310/15:00115925 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Knowledge Discovery in Mega-Spectra Archives
Popis výsledku v původním jazyce
The recent progress of astronomical instrumentation resulted in the construction of multi-object spectrographs with hundreds to thousands of micro-slits or optical fibres allowing the acquisition of tens of thousands of spectra of celestial objects per observing night. Currently there are two spectroscopic surveys containing millions of spectra. These surveys are being processed by automatic pipelines, spectrum by spectrum, in order to estimate physical parameters of individual objects resulting in extensive catalogues, used typically to construct the better models of space-kinematic structure and evolution of the Universe or its subsystems. Such surveys are, however, very good source of homogenised, pre-processed data for application of machine learning techniques common in Astroinformatics. We present challenges of knowledge discovery in such surveys as well as practical examples of machine learning based on specific shapes of spectral features used in searching for new candidates of interesting astronomical objects, namely Be and B [e] stars and quasars.
Název v anglickém jazyce
Knowledge Discovery in Mega-Spectra Archives
Popis výsledku anglicky
The recent progress of astronomical instrumentation resulted in the construction of multi-object spectrographs with hundreds to thousands of micro-slits or optical fibres allowing the acquisition of tens of thousands of spectra of celestial objects per observing night. Currently there are two spectroscopic surveys containing millions of spectra. These surveys are being processed by automatic pipelines, spectrum by spectrum, in order to estimate physical parameters of individual objects resulting in extensive catalogues, used typically to construct the better models of space-kinematic structure and evolution of the Universe or its subsystems. Such surveys are, however, very good source of homogenised, pre-processed data for application of machine learning techniques common in Astroinformatics. We present challenges of knowledge discovery in such surveys as well as practical examples of machine learning based on specific shapes of spectral features used in searching for new candidates of interesting astronomical objects, namely Be and B [e] stars and quasars.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS: XXIV
ISBN
9781583818756
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
87-90
Název nakladatele
ASTRONOMICAL SOC PACIFIC
Místo vydání
SAN FRANCISCO
Místo konání akce
Univ Calgary, Calgary, CANADA
Datum konání akce
5. 10. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000371098000016