Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095202" target="_blank" >RIV/00216224:14310/17:00095202 - isvavai.cz</a>
Výsledek na webu
<a href="http://am.math.cas.cz/" target="_blank" >http://am.math.cas.cz/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2017.0135-17" target="_blank" >10.21136/AM.2017.0135-17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers
Popis výsledku v původním jazyce
We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe's method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically model the viscous and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate systems as well as to a special non-orthogonal geometric system that fits to modeling of astrophysical disks. We describe mathematical background of our codes and their implementation for astrophysical simulations, including choice of initial and boundary conditions. We demonstrate some calculated models and compare the practical usage of numerically different types of codes.
Název v anglickém jazyce
Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers
Popis výsledku anglicky
We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe's method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically model the viscous and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate systems as well as to a special non-orthogonal geometric system that fits to modeling of astrophysical disks. We describe mathematical background of our codes and their implementation for astrophysical simulations, including choice of initial and boundary conditions. We demonstrate some calculated models and compare the practical usage of numerically different types of codes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
27
Strana od-do
633-659
Kód UT WoS článku
000419946700006
EID výsledku v databázi Scopus
—