Infrared ellipsometry study of photogenerated charge carriers at the (001) and (110) surfaces of SrTiO3 crystals and at the interface of the corresponding LaAlO3/SrTiO3 heterostructures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00100226" target="_blank" >RIV/00216224:14310/17:00100226 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevB.95.195107" target="_blank" >http://dx.doi.org/10.1103/PhysRevB.95.195107</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.95.195107" target="_blank" >10.1103/PhysRevB.95.195107</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Infrared ellipsometry study of photogenerated charge carriers at the (001) and (110) surfaces of SrTiO3 crystals and at the interface of the corresponding LaAlO3/SrTiO3 heterostructures
Popis výsledku v původním jazyce
With infrared (IR) ellipsometry and dc resistance measurements, we investigated the photodoping at the (001) and (110) surfaces of SrTiO3 (STO) single crystals and at the corresponding interfaces of LaAlO3/SrTiO3 (LAO/STO) heterostructures. In the bare STO crystals, we find that the photogenerated charge carriers, which accumulate near the (001) surface, have a similar depth profile and sheet carrier concentration as the confined electrons that were previously observed in LAO/STO (001) heterostructures. A large fraction of these photogenerated charge carriers persist at low temperature at the STO (001) surface even after the ultraviolet light has been switched off again. These persistent charge carriers seem to originate from oxygen vacancies that are trapped at the structural domain boundaries, which develop below the so-called antiferrodistortive transition at T * = 105 K. This is most evident from a corresponding photodoping study of the dc transport in STO (110) crystals for which the concentration of these domain boundaries can be modified by applying a weak uniaxial stress. The oxygen vacancies and their trapping by defects are also the source of the electrons that are confined to the interface of LAO/STO (110) heterostructures, which likely do not have a polar discontinuity as in LAO/STO (001). In the former, the trapping and clustering of the oxygen vacancies also has a strong influence on the anisotropy of the charge carrier mobility. We show that this anisotropy can be readily varied and even inverted by various means, such as a gentle thermal treatment, UV irradiation, or even a weak uniaxial stress. Our experiments suggest that extended defects, which develop over long time periods (of weeks to months), can strongly influence the response of the confined charge carriers at the LAO/STO (110) interface.
Název v anglickém jazyce
Infrared ellipsometry study of photogenerated charge carriers at the (001) and (110) surfaces of SrTiO3 crystals and at the interface of the corresponding LaAlO3/SrTiO3 heterostructures
Popis výsledku anglicky
With infrared (IR) ellipsometry and dc resistance measurements, we investigated the photodoping at the (001) and (110) surfaces of SrTiO3 (STO) single crystals and at the corresponding interfaces of LaAlO3/SrTiO3 (LAO/STO) heterostructures. In the bare STO crystals, we find that the photogenerated charge carriers, which accumulate near the (001) surface, have a similar depth profile and sheet carrier concentration as the confined electrons that were previously observed in LAO/STO (001) heterostructures. A large fraction of these photogenerated charge carriers persist at low temperature at the STO (001) surface even after the ultraviolet light has been switched off again. These persistent charge carriers seem to originate from oxygen vacancies that are trapped at the structural domain boundaries, which develop below the so-called antiferrodistortive transition at T * = 105 K. This is most evident from a corresponding photodoping study of the dc transport in STO (110) crystals for which the concentration of these domain boundaries can be modified by applying a weak uniaxial stress. The oxygen vacancies and their trapping by defects are also the source of the electrons that are confined to the interface of LAO/STO (110) heterostructures, which likely do not have a polar discontinuity as in LAO/STO (001). In the former, the trapping and clustering of the oxygen vacancies also has a strong influence on the anisotropy of the charge carrier mobility. We show that this anisotropy can be readily varied and even inverted by various means, such as a gentle thermal treatment, UV irradiation, or even a weak uniaxial stress. Our experiments suggest that extended defects, which develop over long time periods (of weeks to months), can strongly influence the response of the confined charge carriers at the LAO/STO (110) interface.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review B
ISSN
2469-9950
e-ISSN
—
Svazek periodika
95
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
„195107-1“-„195107-13“
Kód UT WoS článku
000400664500004
EID výsledku v databázi Scopus
—