Small presentations of model categories and Vopěnka's principle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100844" target="_blank" >RIV/00216224:14310/18:00100844 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.intlpress.com/site/pub/files/_fulltext/journals/hha/2018/0020/0001/HHA-2018-0020-0001-a018.pdf" target="_blank" >https://www.intlpress.com/site/pub/files/_fulltext/journals/hha/2018/0020/0001/HHA-2018-0020-0001-a018.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Small presentations of model categories and Vopěnka's principle
Popis výsledku v původním jazyce
We prove existence results for small presentations of model categories generalizing a theorem of D. Dugger from combinatorial model categories to more general model categories. Some of these results are shown under the assumption of Vopěnka's principle. Our main theorem applies, in particular, to cofibrantly generated model categories where the domains of the generating cofibrations satisfy a slightly stronger smallness condition. As a consequence, assuming Vopěnka's principle, such a cofibrantly generated model category is Quillen equivalent to a combinatorial model category.
Název v anglickém jazyce
Small presentations of model categories and Vopěnka's principle
Popis výsledku anglicky
We prove existence results for small presentations of model categories generalizing a theorem of D. Dugger from combinatorial model categories to more general model categories. Some of these results are shown under the assumption of Vopěnka's principle. Our main theorem applies, in particular, to cofibrantly generated model categories where the domains of the generating cofibrations satisfy a slightly stronger smallness condition. As a consequence, assuming Vopěnka's principle, such a cofibrantly generated model category is Quillen equivalent to a combinatorial model category.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Homology, Homotopy and Applications
ISSN
1532-0073
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
303-328
Kód UT WoS článku
000440782700018
EID výsledku v databázi Scopus
2-s2.0-85046469081