High-resolution and large-extent mapping of plant species richness using vegetation-plot databases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100871" target="_blank" >RIV/00216224:14310/18:00100871 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1470160X17307173" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1470160X17307173</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecolind.2017.11.005" target="_blank" >10.1016/j.ecolind.2017.11.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High-resolution and large-extent mapping of plant species richness using vegetation-plot databases
Popis výsledku v původním jazyce
The recent increase in the availability of large vegetation-plot databases has created unprecedented opportunities for analysing and explaining patterns of fine-scale plant species richness across large areas and for individual habitat types. Here we demonstrate how these data can be used to (1) prepare country-wide high-resolution maps of species richness and identify national diversity hotspots for grassland and forest vegetation; (2) compare diversity patterns of all, native, alien and Red List species; and (3) identify potential environmental drivers of these patterns. At the same time we examine and quantify the stability of predicted species-richness patterns with respect to the most common biases that are inherent to large vegetation-plot databases. Vegetation-plot records were obtained from the Czech National Phytosociological Database and the Random Forest method was used to map fine-scale spatial diversity patterns of all, native, alien and Red List vascular plant species, separately for grasslands and forests across the Czech Republic. The stability of the predicted species-richness patterns was tested using differently resampled datasets in which we either reduced or increased local oversampling and preferential sampling of more species-rich communities. Models for grassland and forest vegetation explained 40–65% of variation in fine-scale species richness. Spatial patterns of all and native species richness differed considerably between grasslands and forests, whereas alien and Red List species showed a higher congruence between these two vegetation types. Patterns of modelled species richness were highly stable with respect to all resampling strategies applied to the initial datasets. We conclude that vegetation-plot databases are a valuable source of data for high-resolution mapping of the plant species richness of different vegetation types and species groups, because each of them can exhibit a different diversity pattern. The resulting maps provide robust representation of the spatial patterns of fine-scale species richness and can be used both for testing scientific hypotheses about the controls of diversity patterns and for conservation planning.
Název v anglickém jazyce
High-resolution and large-extent mapping of plant species richness using vegetation-plot databases
Popis výsledku anglicky
The recent increase in the availability of large vegetation-plot databases has created unprecedented opportunities for analysing and explaining patterns of fine-scale plant species richness across large areas and for individual habitat types. Here we demonstrate how these data can be used to (1) prepare country-wide high-resolution maps of species richness and identify national diversity hotspots for grassland and forest vegetation; (2) compare diversity patterns of all, native, alien and Red List species; and (3) identify potential environmental drivers of these patterns. At the same time we examine and quantify the stability of predicted species-richness patterns with respect to the most common biases that are inherent to large vegetation-plot databases. Vegetation-plot records were obtained from the Czech National Phytosociological Database and the Random Forest method was used to map fine-scale spatial diversity patterns of all, native, alien and Red List vascular plant species, separately for grasslands and forests across the Czech Republic. The stability of the predicted species-richness patterns was tested using differently resampled datasets in which we either reduced or increased local oversampling and preferential sampling of more species-rich communities. Models for grassland and forest vegetation explained 40–65% of variation in fine-scale species richness. Spatial patterns of all and native species richness differed considerably between grasslands and forests, whereas alien and Red List species showed a higher congruence between these two vegetation types. Patterns of modelled species richness were highly stable with respect to all resampling strategies applied to the initial datasets. We conclude that vegetation-plot databases are a valuable source of data for high-resolution mapping of the plant species richness of different vegetation types and species groups, because each of them can exhibit a different diversity pattern. The resulting maps provide robust representation of the spatial patterns of fine-scale species richness and can be used both for testing scientific hypotheses about the controls of diversity patterns and for conservation planning.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
<a href="/cs/project/GB14-36079G" target="_blank" >GB14-36079G: Centrum analýzy a syntézy rostlinné diverzity (PLADIAS)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecological Indicators
ISSN
1470-160X
e-ISSN
—
Svazek periodika
89
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
840-851
Kód UT WoS článku
000430760900079
EID výsledku v databázi Scopus
2-s2.0-85042376363