Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

High-resolution and large-extent mapping of plant species richness using vegetation-plot databases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100871" target="_blank" >RIV/00216224:14310/18:00100871 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1470160X17307173" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1470160X17307173</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ecolind.2017.11.005" target="_blank" >10.1016/j.ecolind.2017.11.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    High-resolution and large-extent mapping of plant species richness using vegetation-plot databases

  • Popis výsledku v původním jazyce

    The recent increase in the availability of large vegetation-plot databases has created unprecedented opportunities for analysing and explaining patterns of fine-scale plant species richness across large areas and for individual habitat types. Here we demonstrate how these data can be used to (1) prepare country-wide high-resolution maps of species richness and identify national diversity hotspots for grassland and forest vegetation; (2) compare diversity patterns of all, native, alien and Red List species; and (3) identify potential environmental drivers of these patterns. At the same time we examine and quantify the stability of predicted species-richness patterns with respect to the most common biases that are inherent to large vegetation-plot databases. Vegetation-plot records were obtained from the Czech National Phytosociological Database and the Random Forest method was used to map fine-scale spatial diversity patterns of all, native, alien and Red List vascular plant species, separately for grasslands and forests across the Czech Republic. The stability of the predicted species-richness patterns was tested using differently resampled datasets in which we either reduced or increased local oversampling and preferential sampling of more species-rich communities. Models for grassland and forest vegetation explained 40–65% of variation in fine-scale species richness. Spatial patterns of all and native species richness differed considerably between grasslands and forests, whereas alien and Red List species showed a higher congruence between these two vegetation types. Patterns of modelled species richness were highly stable with respect to all resampling strategies applied to the initial datasets. We conclude that vegetation-plot databases are a valuable source of data for high-resolution mapping of the plant species richness of different vegetation types and species groups, because each of them can exhibit a different diversity pattern. The resulting maps provide robust representation of the spatial patterns of fine-scale species richness and can be used both for testing scientific hypotheses about the controls of diversity patterns and for conservation planning.

  • Název v anglickém jazyce

    High-resolution and large-extent mapping of plant species richness using vegetation-plot databases

  • Popis výsledku anglicky

    The recent increase in the availability of large vegetation-plot databases has created unprecedented opportunities for analysing and explaining patterns of fine-scale plant species richness across large areas and for individual habitat types. Here we demonstrate how these data can be used to (1) prepare country-wide high-resolution maps of species richness and identify national diversity hotspots for grassland and forest vegetation; (2) compare diversity patterns of all, native, alien and Red List species; and (3) identify potential environmental drivers of these patterns. At the same time we examine and quantify the stability of predicted species-richness patterns with respect to the most common biases that are inherent to large vegetation-plot databases. Vegetation-plot records were obtained from the Czech National Phytosociological Database and the Random Forest method was used to map fine-scale spatial diversity patterns of all, native, alien and Red List vascular plant species, separately for grasslands and forests across the Czech Republic. The stability of the predicted species-richness patterns was tested using differently resampled datasets in which we either reduced or increased local oversampling and preferential sampling of more species-rich communities. Models for grassland and forest vegetation explained 40–65% of variation in fine-scale species richness. Spatial patterns of all and native species richness differed considerably between grasslands and forests, whereas alien and Red List species showed a higher congruence between these two vegetation types. Patterns of modelled species richness were highly stable with respect to all resampling strategies applied to the initial datasets. We conclude that vegetation-plot databases are a valuable source of data for high-resolution mapping of the plant species richness of different vegetation types and species groups, because each of them can exhibit a different diversity pattern. The resulting maps provide robust representation of the spatial patterns of fine-scale species richness and can be used both for testing scientific hypotheses about the controls of diversity patterns and for conservation planning.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10611 - Plant sciences, botany

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GB14-36079G" target="_blank" >GB14-36079G: Centrum analýzy a syntézy rostlinné diverzity (PLADIAS)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ecological Indicators

  • ISSN

    1470-160X

  • e-ISSN

  • Svazek periodika

    89

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    840-851

  • Kód UT WoS článku

    000430760900079

  • EID výsledku v databázi Scopus

    2-s2.0-85042376363