Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Impact of the access tunnel engineering on catalysis is strictly ligand-specific

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100915" target="_blank" >RIV/00216224:14310/18:00100915 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00159816:_____/18:00068672

  • Výsledek na webu

    <a href="https://doi.org/10.1111/febs.14418" target="_blank" >https://doi.org/10.1111/febs.14418</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/febs.14418" target="_blank" >10.1111/febs.14418</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Impact of the access tunnel engineering on catalysis is strictly ligand-specific

  • Popis výsledku v původním jazyce

    The traditional way of rationally engineering enzymes to change their biocatalytic properties utilizes the modifications of their active sites. Another emerging approach is the engineering of structural features involved in the exchange of ligands between buried active sites and the surrounding solvent. However, surprisingly little is known about the effects of mutations that alter the access tunnels on the enzymes’ catalytic properties, and how these tunnels should be redesigned to allow fast passage of cognate substrates and products. Thus, we have systematically studied the effects of single-point mutations in a tunnel-lining residue of a haloalkane dehalogenase on the binding kinetics and catalytic conversion of both linear and branched haloalkanes. The hotspot residue Y176 was identified using computer simulations and randomized through saturation mutagenesis, and the resulting variants were screened for shifts in binding rates. Strikingly, opposite effects of the substituted residues on the catalytic efficiency toward linear and branched substrates were observed, which was found to be due to substrate-specific requirements in the critical steps of the respective catalytic cycles. We conclude that not only the catalytic sites, but also the access pathways must be tailored specifically for each individual ligand, which is a new paradigm in protein engineering and de novo protein design. A rational approach is proposed here to address more effectively the task of designing ligand-specific tunnels using computational tools.

  • Název v anglickém jazyce

    Impact of the access tunnel engineering on catalysis is strictly ligand-specific

  • Popis výsledku anglicky

    The traditional way of rationally engineering enzymes to change their biocatalytic properties utilizes the modifications of their active sites. Another emerging approach is the engineering of structural features involved in the exchange of ligands between buried active sites and the surrounding solvent. However, surprisingly little is known about the effects of mutations that alter the access tunnels on the enzymes’ catalytic properties, and how these tunnels should be redesigned to allow fast passage of cognate substrates and products. Thus, we have systematically studied the effects of single-point mutations in a tunnel-lining residue of a haloalkane dehalogenase on the binding kinetics and catalytic conversion of both linear and branched haloalkanes. The hotspot residue Y176 was identified using computer simulations and randomized through saturation mutagenesis, and the resulting variants were screened for shifts in binding rates. Strikingly, opposite effects of the substituted residues on the catalytic efficiency toward linear and branched substrates were observed, which was found to be due to substrate-specific requirements in the critical steps of the respective catalytic cycles. We conclude that not only the catalytic sites, but also the access pathways must be tailored specifically for each individual ligand, which is a new paradigm in protein engineering and de novo protein design. A rational approach is proposed here to address more effectively the task of designing ligand-specific tunnels using computational tools.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10401 - Organic chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    the FEBS Journal

  • ISSN

    1742-464X

  • e-ISSN

  • Svazek periodika

    285/2018

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    21

  • Strana od-do

    1456-1476

  • Kód UT WoS článku

    000430691000007

  • EID výsledku v databázi Scopus