Molecular Gating of an Engineered Enzyme Captured in Real Time
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00101750" target="_blank" >RIV/00216224:14310/18:00101750 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388971:_____/18:00500166 RIV/61388955:_____/18:00498928 RIV/00159816:_____/18:00069367
Výsledek na webu
<a href="http://dx.doi.org/10.1021/jacs.8b09848" target="_blank" >http://dx.doi.org/10.1021/jacs.8b09848</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/jacs.8b09848" target="_blank" >10.1021/jacs.8b09848</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molecular Gating of an Engineered Enzyme Captured in Real Time
Popis výsledku v původním jazyce
Enzyme engineering tends to focus on the design of active sites for the chemical steps, while the physical steps of the catalytic cycle are often overlooked. Tight binding of a substrate in an active site is beneficial for the chemical steps, whereas good accessibility benefits substrate binding and product release. Many enzymes control the accessibility of their active sites by molecular gates. Here we analyzed the dynamics of a molecular gate artificially introduced into an access tunnel of the most efficient haloalkane dehalogenase using pre-steady-state kinetics, single-molecule fluorescence spectroscopy, and molecular dynamics. Photoinduced electron-transfer fluorescence correlation spectroscopy (PET-FCS) has enabled real-time observation of molecular gating at the single-molecule level with rate constants (k(on) = 1822 s(-1), k(off) = 60 s(-1)) corresponding well with those from the pre-steady-state kinetics (k(-1) = 1100 s(-1), k(1) = 20 s(-1)). The PET-FCS technique is used here to study the conformational dynamics in a soluble enzyme, thus demonstrating an additional application for this method. Engineering dynamical molecular gates represents a widely applicable strategy for designing efficient biocatalysts.
Název v anglickém jazyce
Molecular Gating of an Engineered Enzyme Captured in Real Time
Popis výsledku anglicky
Enzyme engineering tends to focus on the design of active sites for the chemical steps, while the physical steps of the catalytic cycle are often overlooked. Tight binding of a substrate in an active site is beneficial for the chemical steps, whereas good accessibility benefits substrate binding and product release. Many enzymes control the accessibility of their active sites by molecular gates. Here we analyzed the dynamics of a molecular gate artificially introduced into an access tunnel of the most efficient haloalkane dehalogenase using pre-steady-state kinetics, single-molecule fluorescence spectroscopy, and molecular dynamics. Photoinduced electron-transfer fluorescence correlation spectroscopy (PET-FCS) has enabled real-time observation of molecular gating at the single-molecule level with rate constants (k(on) = 1822 s(-1), k(off) = 60 s(-1)) corresponding well with those from the pre-steady-state kinetics (k(-1) = 1100 s(-1), k(1) = 20 s(-1)). The PET-FCS technique is used here to study the conformational dynamics in a soluble enzyme, thus demonstrating an additional application for this method. Engineering dynamical molecular gates represents a widely applicable strategy for designing efficient biocatalysts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10401 - Organic chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the American Chemical Society
ISSN
0002-7863
e-ISSN
—
Svazek periodika
140
Číslo periodika v rámci svazku
51
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
17999-18008
Kód UT WoS článku
000454751800028
EID výsledku v databázi Scopus
—