Sorption to soil, biochar and compost: is prediction to multicomponent mixtures possible based on single sorbent measurements?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00106128" target="_blank" >RIV/00216224:14310/18:00106128 - isvavai.cz</a>
Výsledek na webu
<a href="https://peerj.com/articles/4996/" target="_blank" >https://peerj.com/articles/4996/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj.4996" target="_blank" >10.7717/peerj.4996</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sorption to soil, biochar and compost: is prediction to multicomponent mixtures possible based on single sorbent measurements?
Popis výsledku v původním jazyce
Amendment with biochar and/or compost has been proposed as a strategy to remediate soil contaminated with low levels of polycyclic aromatic hydrocarbons. The strong sorption potential of biochar can help sequestering contaminants while the compost may promote their degradation. An improved understanding of how sorption evolves upon soil amendment is an essential step towards the implementation of the approach. The present study reports on the sorption of pyrene to two soils, four biochars and one compost. Detailed isotherm analyzes across a wide range of concentration confirmed that soil amendments can significantly increase the sorption of pyrene. Comparisons of data obtained by a classical batch and a passive sampling method suggest that dissolved organic matter did not play a significant role on the sorption of pyrene. The addition of 10% compost to soil led to a moderate increase in sorption (<2-fold), which could be well predicted based on measurements of sorption to the individual components. Hence, our result suggest that the sorption of pyrene to soil and compost can be relatively well approximated by an additive process. The addition of 5% biochar to soil (with or without compost) led to a major increase in the sorption of pyrene (2.5-4.7-fold), which was, however, much smaller than that suggested based on the sorption measured on the three individual components. Results suggest that the strong sorption to the biochar was attenuated by up to 80% in the presence of soil and compost, much likely due to surface and pore blockage. Results were very similar in the two soils considered, and collectively suggest that combined amendments with compost and biochar may be a useful approach to remediate soils with low levels of contamination. Further studies carried out in more realistic settings and over longer periods of time are the next step to evaluate the long term viability of remediation approaches based on biochar amendments.
Název v anglickém jazyce
Sorption to soil, biochar and compost: is prediction to multicomponent mixtures possible based on single sorbent measurements?
Popis výsledku anglicky
Amendment with biochar and/or compost has been proposed as a strategy to remediate soil contaminated with low levels of polycyclic aromatic hydrocarbons. The strong sorption potential of biochar can help sequestering contaminants while the compost may promote their degradation. An improved understanding of how sorption evolves upon soil amendment is an essential step towards the implementation of the approach. The present study reports on the sorption of pyrene to two soils, four biochars and one compost. Detailed isotherm analyzes across a wide range of concentration confirmed that soil amendments can significantly increase the sorption of pyrene. Comparisons of data obtained by a classical batch and a passive sampling method suggest that dissolved organic matter did not play a significant role on the sorption of pyrene. The addition of 10% compost to soil led to a moderate increase in sorption (<2-fold), which could be well predicted based on measurements of sorption to the individual components. Hence, our result suggest that the sorption of pyrene to soil and compost can be relatively well approximated by an additive process. The addition of 5% biochar to soil (with or without compost) led to a major increase in the sorption of pyrene (2.5-4.7-fold), which was, however, much smaller than that suggested based on the sorption measured on the three individual components. Results suggest that the strong sorption to the biochar was attenuated by up to 80% in the presence of soil and compost, much likely due to surface and pore blockage. Results were very similar in the two soils considered, and collectively suggest that combined amendments with compost and biochar may be a useful approach to remediate soils with low levels of contamination. Further studies carried out in more realistic settings and over longer periods of time are the next step to evaluate the long term viability of remediation approaches based on biochar amendments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PeerJ
ISSN
2167-8359
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000434853100008
EID výsledku v databázi Scopus
2-s2.0-85048297890