On the Coextension of Cut-Continuous Pomonoids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107993" target="_blank" >RIV/00216224:14310/19:00107993 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs11083-018-9466-3" target="_blank" >https://link.springer.com/article/10.1007%2Fs11083-018-9466-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11083-018-9466-3" target="_blank" >10.1007/s11083-018-9466-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Coextension of Cut-Continuous Pomonoids
Popis výsledku v původním jazyce
We introduce cut-continuous pomonoids, which generalise residuated posets. The latter's defining condition is that the monoidal product is residuated in each argument; we define cut-continuous pomonoids by requiring that the monoidal product is in each argument just cut-continuous. In the case of a total order, the condition of cut-continuity means that multiplication distributes over existing suprema. Morphisms between cut-continuous pomonoids can be chosen either in analogy with unital quantales or with residuated lattices. Under the assumption of commutativity and integrality, congruences are in the latter case induced by filters, in the same way as known for residuated lattices. We are interested in the construction of coextensions: given cut-continuous pomonoids K and C, we raise the question how we can determine the cut-continuous pomonoids L such that C is a filter of L and the quotient of L induced by C is isomorphic to K. In this context, we are in particular concerned with tensor products of modules over cut-continuous pomonoids. Using results of M. Erne and J. Picado on closure spaces, we show that such tensor products exist. An application is the construction of residuated structures related to fuzzy logics, in particular left-continuous t-norms.
Název v anglickém jazyce
On the Coextension of Cut-Continuous Pomonoids
Popis výsledku anglicky
We introduce cut-continuous pomonoids, which generalise residuated posets. The latter's defining condition is that the monoidal product is residuated in each argument; we define cut-continuous pomonoids by requiring that the monoidal product is in each argument just cut-continuous. In the case of a total order, the condition of cut-continuity means that multiplication distributes over existing suprema. Morphisms between cut-continuous pomonoids can be chosen either in analogy with unital quantales or with residuated lattices. Under the assumption of commutativity and integrality, congruences are in the latter case induced by filters, in the same way as known for residuated lattices. We are interested in the construction of coextensions: given cut-continuous pomonoids K and C, we raise the question how we can determine the cut-continuous pomonoids L such that C is a filter of L and the quotient of L induced by C is isomorphic to K. In this context, we are in particular concerned with tensor products of modules over cut-continuous pomonoids. Using results of M. Erne and J. Picado on closure spaces, we show that such tensor products exist. An application is the construction of residuated structures related to fuzzy logics, in particular left-continuous t-norms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF15-34697L" target="_blank" >GF15-34697L: Nové přístupy k reziduovaným posetům</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS
ISSN
0167-8094
e-ISSN
1572-9273
Svazek periodika
36
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
271-290
Kód UT WoS článku
000476618800007
EID výsledku v databázi Scopus
2-s2.0-85051476485