Temperature dependent dispersion models applicable in solid state physics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00111216" target="_blank" >RIV/00216224:14310/19:00111216 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.2478/jee-2019-0036" target="_blank" >https://doi.org/10.2478/jee-2019-0036</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/jee-2019-0036" target="_blank" >10.2478/jee-2019-0036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Temperature dependent dispersion models applicable in solid state physics
Popis výsledku v původním jazyce
Dispersion models are necessary for precise determination of the dielectric response of materials used in optical and microelectronics industry. Although the study of the dielectric response is often limited only to the dependence of the optical constants on frequency, it is also important to consider its dependence on other quantities characterizing the state of the system. One of the most important quantities determining the state of the condensed matter in equilibrium is temperature. Introducing temperature dependence into dispersion models is quite challenging. A physically correct model of dielectric response must respect three fundamental and one supplementary conditions imposed on the dielectric function. The three fundamental conditions are the time-reversal symmetry, Kramers-Kronig consistency and sum rule. These three fundamental conditions are valid for any material in any state. For systems in equilibrium there is also a supplementary dissipative condition. In this contribution it will be shown how these conditions can be applied in the construction of temperature dependent dispersion models. Practical results will be demonstrated on the temperature dependent dispersion model of crystalline silicon.
Název v anglickém jazyce
Temperature dependent dispersion models applicable in solid state physics
Popis výsledku anglicky
Dispersion models are necessary for precise determination of the dielectric response of materials used in optical and microelectronics industry. Although the study of the dielectric response is often limited only to the dependence of the optical constants on frequency, it is also important to consider its dependence on other quantities characterizing the state of the system. One of the most important quantities determining the state of the condensed matter in equilibrium is temperature. Introducing temperature dependence into dispersion models is quite challenging. A physically correct model of dielectric response must respect three fundamental and one supplementary conditions imposed on the dielectric function. The three fundamental conditions are the time-reversal symmetry, Kramers-Kronig consistency and sum rule. These three fundamental conditions are valid for any material in any state. For systems in equilibrium there is also a supplementary dissipative condition. In this contribution it will be shown how these conditions can be applied in the construction of temperature dependent dispersion models. Practical results will be demonstrated on the temperature dependent dispersion model of crystalline silicon.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1411" target="_blank" >LO1411: Rozvoj centra pro nízkonákladové plazmové a nanotechnologické povrchové úpravy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Electrical Engineering
ISSN
1335-3632
e-ISSN
1339-309X
Svazek periodika
70
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000489301300001
EID výsledku v databázi Scopus
2-s2.0-85073213129