Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Suppressed effective viscosity in the bulk intergalactic plasma

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00111553" target="_blank" >RIV/00216224:14310/19:00111553 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41550-019-0794-z" target="_blank" >https://www.nature.com/articles/s41550-019-0794-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41550-019-0794-z" target="_blank" >10.1038/s41550-019-0794-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Suppressed effective viscosity in the bulk intergalactic plasma

  • Popis výsledku v původním jazyce

    Transport properties, such as viscosity and thermal conduction, of the hot intergalactic plasma in clusters of galaxies are largely unknown. Whereas for laboratory plasmas these characteristics are derived from the gas density and temperature(1), such recipes can be fundamentally different for the intergalactic plasma(2) owing to a low rate of particle collisions and a weak magnetic field(3). In numerical simulations, these unknowns can often be avoided by modelling these plasmas as hydrodynamic fluids(4-6), even though local, non-hydrodynamic features observed in clusters contradict this assumptions(7-)(9). Using deep Chandra observations of the Coma Cluster(10,11), we probe gas fluctuations in intergalactic medium down to spatial scales where the transport processes should prominently manifest themselves-provided that hydrodynamic models(12) with pure Coulomb collision rates are indeed adequate. We do not find evidence of such transport processes, implying that the effective isotropic viscosity is orders of magnitude smaller than naively expected. This indicates either an enhanced collision rate in the plasma due to particle scattering off microfluctuations caused by plasma instabilities(2,13,24) or that the transport processes are anisotropic with respect to the local magnetic field(15). This also means that numerical models with high Reynolds number appear more consistent with observations. Our results demonstrate that observations of turbulence in clusters(16,17) are giving rise to a branch of astrophysics that can sharpen theoretical views on galactic plasmas.

  • Název v anglickém jazyce

    Suppressed effective viscosity in the bulk intergalactic plasma

  • Popis výsledku anglicky

    Transport properties, such as viscosity and thermal conduction, of the hot intergalactic plasma in clusters of galaxies are largely unknown. Whereas for laboratory plasmas these characteristics are derived from the gas density and temperature(1), such recipes can be fundamentally different for the intergalactic plasma(2) owing to a low rate of particle collisions and a weak magnetic field(3). In numerical simulations, these unknowns can often be avoided by modelling these plasmas as hydrodynamic fluids(4-6), even though local, non-hydrodynamic features observed in clusters contradict this assumptions(7-)(9). Using deep Chandra observations of the Coma Cluster(10,11), we probe gas fluctuations in intergalactic medium down to spatial scales where the transport processes should prominently manifest themselves-provided that hydrodynamic models(12) with pure Coulomb collision rates are indeed adequate. We do not find evidence of such transport processes, implying that the effective isotropic viscosity is orders of magnitude smaller than naively expected. This indicates either an enhanced collision rate in the plasma due to particle scattering off microfluctuations caused by plasma instabilities(2,13,24) or that the transport processes are anisotropic with respect to the local magnetic field(15). This also means that numerical models with high Reynolds number appear more consistent with observations. Our results demonstrate that observations of turbulence in clusters(16,17) are giving rise to a branch of astrophysics that can sharpen theoretical views on galactic plasmas.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    NATURE ASTRONOMY

  • ISSN

    2397-3366

  • e-ISSN

  • Svazek periodika

    3

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    6

  • Strana od-do

    832-837

  • Kód UT WoS článku

    000485096800014

  • EID výsledku v databázi Scopus

    2-s2.0-85068085056