Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Projective geometry of Sasaki-Einstein structures and their compactification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00114700" target="_blank" >RIV/00216224:14310/19:00114700 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.impan.pl/en/publishing-house/journals-and-series/dissertationes-mathematicae/online/113324/projective-geometry-of-sasaki-einstein-structures-and-their-compactification" target="_blank" >https://www.impan.pl/en/publishing-house/journals-and-series/dissertationes-mathematicae/online/113324/projective-geometry-of-sasaki-einstein-structures-and-their-compactification</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/dm786-7-2019" target="_blank" >10.4064/dm786-7-2019</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Projective geometry of Sasaki-Einstein structures and their compactification

  • Popis výsledku v původním jazyce

    We show that the standard definitions of Sasaki structures have elegant and simplifying interpretations in terms of projective differential geometry. For Sasaki-Einstein structures we use projective geometry to provide a resolution of such structures into geometrically less rigid components; the latter elemental components are separately, complex, orthogonal, and symplectic holonomy reductions of the canonical projective tractor/Cartan connection. This leads to a characterisation of Sasaki-Einstein structures as projective structures with certain unitary holonomy reductions. As an immediate application, this is used to describe the projective compactification of indefinite (suitably) complete noncompact Sasaki-Einstein structures and to prove that the boundary at infinity is a Fefferman conformal manifold that thus fibres over a nondegenerate CR manifold (of hypersurface type). We prove that this CR manifold coincides with the boundary at infinity for the c-projective compactification of the Kahler-Einstein manifold that arises, in the usual way, as a leaf space for the defining Killing field of the given Sasaki-Einstein manifold. A procedure for constructing examples is given. The discussion of symplectic holonomy reductions of projective structures leads us moreover to a new and simplifying approach to contact projective geometry. This is of independent interest and is treated in some detail.

  • Název v anglickém jazyce

    Projective geometry of Sasaki-Einstein structures and their compactification

  • Popis výsledku anglicky

    We show that the standard definitions of Sasaki structures have elegant and simplifying interpretations in terms of projective differential geometry. For Sasaki-Einstein structures we use projective geometry to provide a resolution of such structures into geometrically less rigid components; the latter elemental components are separately, complex, orthogonal, and symplectic holonomy reductions of the canonical projective tractor/Cartan connection. This leads to a characterisation of Sasaki-Einstein structures as projective structures with certain unitary holonomy reductions. As an immediate application, this is used to describe the projective compactification of indefinite (suitably) complete noncompact Sasaki-Einstein structures and to prove that the boundary at infinity is a Fefferman conformal manifold that thus fibres over a nondegenerate CR manifold (of hypersurface type). We prove that this CR manifold coincides with the boundary at infinity for the c-projective compactification of the Kahler-Einstein manifold that arises, in the usual way, as a leaf space for the defining Killing field of the given Sasaki-Einstein manifold. A procedure for constructing examples is given. The discussion of symplectic holonomy reductions of projective structures leads us moreover to a new and simplifying approach to contact projective geometry. This is of independent interest and is treated in some detail.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Dissertationes Mathematicae

  • ISSN

    0012-3862

  • e-ISSN

    1730-6310

  • Svazek periodika

    546

  • Číslo periodika v rámci svazku

    2019

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    64

  • Strana od-do

    1-64

  • Kód UT WoS článku

    000559966700001

  • EID výsledku v databázi Scopus

    2-s2.0-85078587080