Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Monazite Behaviour during Metamorphic Evolution of a Diamond-bearing Gneiss: a Case Study from the Seve Nappe Complex, Scandinavian Caledonides

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00117920" target="_blank" >RIV/00216224:14310/19:00117920 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://academic.oup.com/petrology/advance-article/doi/10.1093/petrology/egz051/5613903" target="_blank" >https://academic.oup.com/petrology/advance-article/doi/10.1093/petrology/egz051/5613903</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/petrology/egz051" target="_blank" >10.1093/petrology/egz051</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Monazite Behaviour during Metamorphic Evolution of a Diamond-bearing Gneiss: a Case Study from the Seve Nappe Complex, Scandinavian Caledonides

  • Popis výsledku v původním jazyce

    Monazite is a common mineral in metapelitic rocks including those that underwent ultrahigh-pressure (UHP) metamorphism. During metamorphic evolution monazite adapts its composition to the changing mineral assemblage, especially in its heavy rare earth element contents. We studied this process in diamond-bearing gneiss containing monazite, from Saxnas in the Seve Nappe Complex of the Scandinavian Caledonides. Although the rock has been re-equilibrated under granulite-facies and partial melting conditions, it still preserves minerals from the UHP stage: garnet, kyanite, rutile, and especially diamond. Microdiamonds occur in situ as inclusions in garnet, kyanite and zircon, either as single crystals or as polyphase inclusions with Fe-Mg carbonates, rutile and CO2. Both monazite and diamond occur in the rims of garnet showing the highest pyrope content and a secondary peak of yttrium. Such a position indicates thermally activated diffusion under high temperature at the end of prograde metamorphism. Monazite compositions show negative Eu anomalies, which we interpret to be inherited from the source rock, not reflecting the coexistence with plagioclase and/or K-feldspar, which are unstable at UHP conditions. Our results suggest that the effect of whole-rock composition may be more important than that of coexisting phases. The UHP monazite was most probably formed from allanite during subduction and prograde metamorphism. The monazites included in garnet and kyanite are mostly unaltered, whereas those in the matrix show breakdown coronas consisting of apatite, REE-epidote/allanite and REE-carbonate, probably formed as a result of pressure decrease and cooling. U-Th-Pb chemical age dating of monazites yields an isochron centroid age of 472 +/- 3 Ma. We interpret this age as monazite growth under UHP conditions related to subduction of the Baltica continental margin in Early Ordovician time.

  • Název v anglickém jazyce

    Monazite Behaviour during Metamorphic Evolution of a Diamond-bearing Gneiss: a Case Study from the Seve Nappe Complex, Scandinavian Caledonides

  • Popis výsledku anglicky

    Monazite is a common mineral in metapelitic rocks including those that underwent ultrahigh-pressure (UHP) metamorphism. During metamorphic evolution monazite adapts its composition to the changing mineral assemblage, especially in its heavy rare earth element contents. We studied this process in diamond-bearing gneiss containing monazite, from Saxnas in the Seve Nappe Complex of the Scandinavian Caledonides. Although the rock has been re-equilibrated under granulite-facies and partial melting conditions, it still preserves minerals from the UHP stage: garnet, kyanite, rutile, and especially diamond. Microdiamonds occur in situ as inclusions in garnet, kyanite and zircon, either as single crystals or as polyphase inclusions with Fe-Mg carbonates, rutile and CO2. Both monazite and diamond occur in the rims of garnet showing the highest pyrope content and a secondary peak of yttrium. Such a position indicates thermally activated diffusion under high temperature at the end of prograde metamorphism. Monazite compositions show negative Eu anomalies, which we interpret to be inherited from the source rock, not reflecting the coexistence with plagioclase and/or K-feldspar, which are unstable at UHP conditions. Our results suggest that the effect of whole-rock composition may be more important than that of coexisting phases. The UHP monazite was most probably formed from allanite during subduction and prograde metamorphism. The monazites included in garnet and kyanite are mostly unaltered, whereas those in the matrix show breakdown coronas consisting of apatite, REE-epidote/allanite and REE-carbonate, probably formed as a result of pressure decrease and cooling. U-Th-Pb chemical age dating of monazites yields an isochron centroid age of 472 +/- 3 Ma. We interpret this age as monazite growth under UHP conditions related to subduction of the Baltica continental margin in Early Ordovician time.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Petrology

  • ISSN

    0022-3530

  • e-ISSN

    1460-2415

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    24

  • Strana od-do

    1773-1796

  • Kód UT WoS článku

    000583927000003

  • EID výsledku v databázi Scopus

    2-s2.0-85082046019