Monazite Behaviour during Metamorphic Evolution of a Diamond-bearing Gneiss: a Case Study from the Seve Nappe Complex, Scandinavian Caledonides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00117920" target="_blank" >RIV/00216224:14310/19:00117920 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/petrology/advance-article/doi/10.1093/petrology/egz051/5613903" target="_blank" >https://academic.oup.com/petrology/advance-article/doi/10.1093/petrology/egz051/5613903</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/petrology/egz051" target="_blank" >10.1093/petrology/egz051</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Monazite Behaviour during Metamorphic Evolution of a Diamond-bearing Gneiss: a Case Study from the Seve Nappe Complex, Scandinavian Caledonides
Popis výsledku v původním jazyce
Monazite is a common mineral in metapelitic rocks including those that underwent ultrahigh-pressure (UHP) metamorphism. During metamorphic evolution monazite adapts its composition to the changing mineral assemblage, especially in its heavy rare earth element contents. We studied this process in diamond-bearing gneiss containing monazite, from Saxnas in the Seve Nappe Complex of the Scandinavian Caledonides. Although the rock has been re-equilibrated under granulite-facies and partial melting conditions, it still preserves minerals from the UHP stage: garnet, kyanite, rutile, and especially diamond. Microdiamonds occur in situ as inclusions in garnet, kyanite and zircon, either as single crystals or as polyphase inclusions with Fe-Mg carbonates, rutile and CO2. Both monazite and diamond occur in the rims of garnet showing the highest pyrope content and a secondary peak of yttrium. Such a position indicates thermally activated diffusion under high temperature at the end of prograde metamorphism. Monazite compositions show negative Eu anomalies, which we interpret to be inherited from the source rock, not reflecting the coexistence with plagioclase and/or K-feldspar, which are unstable at UHP conditions. Our results suggest that the effect of whole-rock composition may be more important than that of coexisting phases. The UHP monazite was most probably formed from allanite during subduction and prograde metamorphism. The monazites included in garnet and kyanite are mostly unaltered, whereas those in the matrix show breakdown coronas consisting of apatite, REE-epidote/allanite and REE-carbonate, probably formed as a result of pressure decrease and cooling. U-Th-Pb chemical age dating of monazites yields an isochron centroid age of 472 +/- 3 Ma. We interpret this age as monazite growth under UHP conditions related to subduction of the Baltica continental margin in Early Ordovician time.
Název v anglickém jazyce
Monazite Behaviour during Metamorphic Evolution of a Diamond-bearing Gneiss: a Case Study from the Seve Nappe Complex, Scandinavian Caledonides
Popis výsledku anglicky
Monazite is a common mineral in metapelitic rocks including those that underwent ultrahigh-pressure (UHP) metamorphism. During metamorphic evolution monazite adapts its composition to the changing mineral assemblage, especially in its heavy rare earth element contents. We studied this process in diamond-bearing gneiss containing monazite, from Saxnas in the Seve Nappe Complex of the Scandinavian Caledonides. Although the rock has been re-equilibrated under granulite-facies and partial melting conditions, it still preserves minerals from the UHP stage: garnet, kyanite, rutile, and especially diamond. Microdiamonds occur in situ as inclusions in garnet, kyanite and zircon, either as single crystals or as polyphase inclusions with Fe-Mg carbonates, rutile and CO2. Both monazite and diamond occur in the rims of garnet showing the highest pyrope content and a secondary peak of yttrium. Such a position indicates thermally activated diffusion under high temperature at the end of prograde metamorphism. Monazite compositions show negative Eu anomalies, which we interpret to be inherited from the source rock, not reflecting the coexistence with plagioclase and/or K-feldspar, which are unstable at UHP conditions. Our results suggest that the effect of whole-rock composition may be more important than that of coexisting phases. The UHP monazite was most probably formed from allanite during subduction and prograde metamorphism. The monazites included in garnet and kyanite are mostly unaltered, whereas those in the matrix show breakdown coronas consisting of apatite, REE-epidote/allanite and REE-carbonate, probably formed as a result of pressure decrease and cooling. U-Th-Pb chemical age dating of monazites yields an isochron centroid age of 472 +/- 3 Ma. We interpret this age as monazite growth under UHP conditions related to subduction of the Baltica continental margin in Early Ordovician time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Petrology
ISSN
0022-3530
e-ISSN
1460-2415
Svazek periodika
60
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
1773-1796
Kód UT WoS článku
000583927000003
EID výsledku v databázi Scopus
2-s2.0-85082046019