Semilinear elliptic equations with Hardy potential and gradient nonlinearity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114498" target="_blank" >RIV/00216224:14310/20:00114498 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ems-ph.org/journals/of_article.php?jrn=rmi&doi=1164&p403=1" target="_blank" >https://www.ems-ph.org/journals/of_article.php?jrn=rmi&doi=1164&p403=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/RMI/1164" target="_blank" >10.4171/RMI/1164</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semilinear elliptic equations with Hardy potential and gradient nonlinearity
Popis výsledku v původním jazyce
Let Omega subset of R-N (N >= 3) be a C-2 bounded domain, and let delta be the distance to partial derivative Omega. In this paper, we study positive solutions of the equation ((*)) - L(mu)u + g(vertical bar del u vertical bar) = 0 in Omega), where L-mu = Delta + mu/delta(2), mu is an element of (0, 1/4] and g is a continuous, nondecreasing function on R+. We prove that if g satisfies a singular integral condition, then there exists a unique solution of ((*)) with a prescribed boundary datum v. When g(t) = t(q) with q is an element of (1, 2), we show that equation ((*)) admits a critical exponent q(mu) (depending only on N and mu). In the subcritical case, namely 1 < q < q(mu), we establish some a priori estimates and provide a description of solutions with an isolated singularity on partial derivative Omega. In the supercritical case, i.e., q(mu) <= q < 2, we demonstrate a removability result in terms of Bessel capacities.
Název v anglickém jazyce
Semilinear elliptic equations with Hardy potential and gradient nonlinearity
Popis výsledku anglicky
Let Omega subset of R-N (N >= 3) be a C-2 bounded domain, and let delta be the distance to partial derivative Omega. In this paper, we study positive solutions of the equation ((*)) - L(mu)u + g(vertical bar del u vertical bar) = 0 in Omega), where L-mu = Delta + mu/delta(2), mu is an element of (0, 1/4] and g is a continuous, nondecreasing function on R+. We prove that if g satisfies a singular integral condition, then there exists a unique solution of ((*)) with a prescribed boundary datum v. When g(t) = t(q) with q is an element of (1, 2), we show that equation ((*)) admits a critical exponent q(mu) (depending only on N and mu). In the subcritical case, namely 1 < q < q(mu), we establish some a priori estimates and provide a description of solutions with an isolated singularity on partial derivative Omega. In the supercritical case, i.e., q(mu) <= q < 2, we demonstrate a removability result in terms of Bessel capacities.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Lineární a nelineární eliptické rovnice se singulárními daty a související problémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Revista Matematica Iberoamericana
ISSN
0213-2230
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
50
Strana od-do
1207-1256
Kód UT WoS článku
000557189600010
EID výsledku v databázi Scopus
2-s2.0-85093863549