Reversibility of computations in graph-walking automata
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114625" target="_blank" >RIV/00216224:14310/20:00114625 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ic.2020.104631" target="_blank" >https://doi.org/10.1016/j.ic.2020.104631</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ic.2020.104631" target="_blank" >10.1016/j.ic.2020.104631</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reversibility of computations in graph-walking automata
Popis výsledku v původním jazyce
Graph-walking automata (GWA) are finite-state devices that traverse graphs given as an input by following their edges; they have been studied both as a theoretical notion and as a model of pathfinding in robotics. If a graph is regarded as the set of memory configurations of a certain abstract machine, then various families of devices can be described as GWA: such are two-way finite automata, their multi-head and multi-tape variants, tree-walking automata and their extension with pebbles, picture-walking automata, space-bounded Turing machines, etc. This paper defines a transformation of an arbitrary deterministic GWA to a reversible GWA. This is done with a linear blow-up in the number of states, where the constant factor depends on the degree of the graphs being traversed. The construction directly applies to all basic models representable as GWA, and, in particular, subsumes numerous existing results for making individual models halt on every input. (C) 2020 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Reversibility of computations in graph-walking automata
Popis výsledku anglicky
Graph-walking automata (GWA) are finite-state devices that traverse graphs given as an input by following their edges; they have been studied both as a theoretical notion and as a model of pathfinding in robotics. If a graph is regarded as the set of memory configurations of a certain abstract machine, then various families of devices can be described as GWA: such are two-way finite automata, their multi-head and multi-tape variants, tree-walking automata and their extension with pebbles, picture-walking automata, space-bounded Turing machines, etc. This paper defines a transformation of an arbitrary deterministic GWA to a reversible GWA. This is done with a linear blow-up in the number of states, where the constant factor depends on the degree of the graphs being traversed. The construction directly applies to all basic models representable as GWA, and, in particular, subsumes numerous existing results for making individual models halt on every input. (C) 2020 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information and computation
ISSN
0890-5401
e-ISSN
1090-2651
Svazek periodika
275
Číslo periodika v rámci svazku
December 2020
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
1-32
Kód UT WoS článku
000595367200029
EID výsledku v databázi Scopus
2-s2.0-85092724813