4th order tensors for multi-fiber resolution and segmentation in white matter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114778" target="_blank" >RIV/00216224:14310/20:00114778 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/20:00354559
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3444884.3444892" target="_blank" >https://dl.acm.org/doi/10.1145/3444884.3444892</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3444884.3444892" target="_blank" >10.1145/3444884.3444892</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
4th order tensors for multi-fiber resolution and segmentation in white matter
Popis výsledku v původním jazyce
Since its inception, DTI modality has become an essential tool in the clinical scenario. In principle, it is rooted in the emergence of symmetric positive definite (SPD) second-order tensors modelling the difusion. The inability of DTI to model regions of white matter with fibers crossing/merging leads to the emergence of higher order tensors. In this work, we compare various approaches how to use 4th order tensors to model such regions. There are three different projections of these 3D 4th order tensors to the 2nd order tensors of dimensions either three or six. Two of these projections are consistent in terms of preserving mean diffusivity and isometry. The images of all three projections are SPD, so they belong to a Riemannian symmetric space. Following previous work of the authors, we use the standard k-means segmentation method after dimension reduction with affinity matrix based on reasonable similarity measures, with the goal to compare the various projections to 2nd order tensors. We are using the natural affine and log-Euclidean (LogE) metrics. The segmentation of curved structures and fiber crossing regions is performed under the presence of several levels of Rician noise. The experiments provide evidence that 3D 2nd order reduction works much better than the 6D one, while diagonal components (DC) projections are able to reveal the maximum diffusion direction.
Název v anglickém jazyce
4th order tensors for multi-fiber resolution and segmentation in white matter
Popis výsledku anglicky
Since its inception, DTI modality has become an essential tool in the clinical scenario. In principle, it is rooted in the emergence of symmetric positive definite (SPD) second-order tensors modelling the difusion. The inability of DTI to model regions of white matter with fibers crossing/merging leads to the emergence of higher order tensors. In this work, we compare various approaches how to use 4th order tensors to model such regions. There are three different projections of these 3D 4th order tensors to the 2nd order tensors of dimensions either three or six. Two of these projections are consistent in terms of preserving mean diffusivity and isometry. The images of all three projections are SPD, so they belong to a Riemannian symmetric space. Following previous work of the authors, we use the standard k-means segmentation method after dimension reduction with affinity matrix based on reasonable similarity measures, with the goal to compare the various projections to 2nd order tensors. We are using the natural affine and log-Euclidean (LogE) metrics. The segmentation of curved structures and fiber crossing regions is performed under the presence of several levels of Rician noise. The experiments provide evidence that 3D 2nd order reduction works much better than the 6D one, while diagonal components (DC) projections are able to reveal the maximum diffusion direction.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 7th International Conference on Biomedical and Bioinformatics Engineering (ICBBE ’20)
ISBN
9781450388221
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
36-42
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Kyoto
Datum konání akce
6. 11. 2020
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—