Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Plant trait filtering is stronger in the herb layer than in the tree layer in Greek mountain forests

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119256" target="_blank" >RIV/00216224:14310/21:00119256 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ecolind.2021.108229" target="_blank" >https://doi.org/10.1016/j.ecolind.2021.108229</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ecolind.2021.108229" target="_blank" >10.1016/j.ecolind.2021.108229</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Plant trait filtering is stronger in the herb layer than in the tree layer in Greek mountain forests

  • Popis výsledku v původním jazyce

    We studied the differentiation among plant communities of deciduous broadleaved and mountain coniferous forests in terms of functional diversity and identity at a regional scale (northern and central Greece). We asked if patterns of functional differentiation among communities are consistent between the overstorey and understorey layers and if they can be influenced by deep past environmental conditions. Functional Richness (FRic) and Functional Dispersion (FDis), as well as their standardized effect sizes, were employed to assess the multivariate functional diversity of the community types. In contrast, single-trait Community Weighted Means (CWMs) were used as surrogates of functional identity. The aforementioned indices were calculated for three datasets, namely all the vascular plant taxa found in individual vegetation plots (total community), all phanerophyte (tree and shrub) taxa (overstorey) and all non-phanerophyte vascular plant taxa (understorey). We found that community types and especially four broad forest types (beech, ravine, pine and oak forests) are well differentiated in terms of functional composition (identity), as indicated by Non-Metric Multidimensional Scaling (NMDS). After conducting an NMDS for the three datasets, functional identity based on the total floristic composition was found to be the best discriminator of the studied communities. However, contrasting patterns were found for some specific traits or their categories between overstorey and understorey layers. The patterns of functional diversity of the community types (based on multivariate indices), revealed by calculating the standardized effect sizes of FRic and FDis based on the richness null model, did not differ substantially from random expectations for most of the studied community types when the dataset of all the vascular plant taxa was analyzed. However, the patterns revealed for the overstorey layer differed from those for the understorey layer. For the latter layer, the clustered structure was revealed in many community types based on the ses.FDis metric. Indications of deep past influence on the functional composition were found for certain community types (i.e. ravine forests) based on single-trait metrics, but no indication of such influence was found based on multivariate indices. Our findings highlight the complementarity and the additive explanatory value of the simultaneous use of single- and multi-trait approaches and their application to different layers in forests.

  • Název v anglickém jazyce

    Plant trait filtering is stronger in the herb layer than in the tree layer in Greek mountain forests

  • Popis výsledku anglicky

    We studied the differentiation among plant communities of deciduous broadleaved and mountain coniferous forests in terms of functional diversity and identity at a regional scale (northern and central Greece). We asked if patterns of functional differentiation among communities are consistent between the overstorey and understorey layers and if they can be influenced by deep past environmental conditions. Functional Richness (FRic) and Functional Dispersion (FDis), as well as their standardized effect sizes, were employed to assess the multivariate functional diversity of the community types. In contrast, single-trait Community Weighted Means (CWMs) were used as surrogates of functional identity. The aforementioned indices were calculated for three datasets, namely all the vascular plant taxa found in individual vegetation plots (total community), all phanerophyte (tree and shrub) taxa (overstorey) and all non-phanerophyte vascular plant taxa (understorey). We found that community types and especially four broad forest types (beech, ravine, pine and oak forests) are well differentiated in terms of functional composition (identity), as indicated by Non-Metric Multidimensional Scaling (NMDS). After conducting an NMDS for the three datasets, functional identity based on the total floristic composition was found to be the best discriminator of the studied communities. However, contrasting patterns were found for some specific traits or their categories between overstorey and understorey layers. The patterns of functional diversity of the community types (based on multivariate indices), revealed by calculating the standardized effect sizes of FRic and FDis based on the richness null model, did not differ substantially from random expectations for most of the studied community types when the dataset of all the vascular plant taxa was analyzed. However, the patterns revealed for the overstorey layer differed from those for the understorey layer. For the latter layer, the clustered structure was revealed in many community types based on the ses.FDis metric. Indications of deep past influence on the functional composition were found for certain community types (i.e. ravine forests) based on single-trait metrics, but no indication of such influence was found based on multivariate indices. Our findings highlight the complementarity and the additive explanatory value of the simultaneous use of single- and multi-trait approaches and their application to different layers in forests.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10600 - Biological sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-28491X" target="_blank" >GX19-28491X: Centrum pro evropské vegetační syntézy (CEVS)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ecological indicators

  • ISSN

    1470-160X

  • e-ISSN

    1872-7034

  • Svazek periodika

    131

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    „108229“

  • Kód UT WoS článku

    000704534800007

  • EID výsledku v databázi Scopus

    2-s2.0-85115447644