Exploring the Emission Pathways in Nitrogen-Doped Graphene Quantum Dots for Bioimaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119558" target="_blank" >RIV/00216224:14310/21:00119558 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081723:_____/21:00547362 RIV/00216305:26620/21:PU142717
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.1c06029#" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.1c06029#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.1c06029" target="_blank" >10.1021/acs.jpcc.1c06029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the Emission Pathways in Nitrogen-Doped Graphene Quantum Dots for Bioimaging
Popis výsledku v původním jazyce
Graphene quantum dots (GQDs) with tunable fluorescence emission promise excellent bioapplication potential, especially in bioimaging. We report the synthesis of nitrogen-doped GQDs (N-GQDs) from glucose and ethylenediamine, cheap and safe chemicals, using a one-step and fast microwave-assisted hydrothermal method. Our N-GQDs exhibit fluorescence in the entire visible spectral region, which extends to near-ultraviolet and slightly to near-infrared. Since the origin of fluorescence and its relation to the structure and synthesis conditions are not yet fully understood, we also concentrated on the fluorescence mechanism explanation. Structural characterization with steady-state and time-resolved photoluminescence measurements indicated that band-to-band transitions, size effect, and different nitrogen and oxygen functional groups play a role in this multicolor emission. Remarkably, we found for the first time the evidence that directly relates a change in the N-GQD work function to the change in oxygen groups under UV irradiation via ultraviolet photoelectron spectroscopy. Thus, we confirmed that for λex ≲ 380 nm, photooxidation processes occurred, which led to chemical modification, thereby lowering the work function in the N-GQDs. The N-GQDs were proved to be highly biocompatible by a cell viability assay using vascular smooth muscle cells. Together with the wide spectral range emission observed in confocal fluorescence imaging, it demonstrated the potential of the N-GQDs for in vitro bioimaging applications.
Název v anglickém jazyce
Exploring the Emission Pathways in Nitrogen-Doped Graphene Quantum Dots for Bioimaging
Popis výsledku anglicky
Graphene quantum dots (GQDs) with tunable fluorescence emission promise excellent bioapplication potential, especially in bioimaging. We report the synthesis of nitrogen-doped GQDs (N-GQDs) from glucose and ethylenediamine, cheap and safe chemicals, using a one-step and fast microwave-assisted hydrothermal method. Our N-GQDs exhibit fluorescence in the entire visible spectral region, which extends to near-ultraviolet and slightly to near-infrared. Since the origin of fluorescence and its relation to the structure and synthesis conditions are not yet fully understood, we also concentrated on the fluorescence mechanism explanation. Structural characterization with steady-state and time-resolved photoluminescence measurements indicated that band-to-band transitions, size effect, and different nitrogen and oxygen functional groups play a role in this multicolor emission. Remarkably, we found for the first time the evidence that directly relates a change in the N-GQD work function to the change in oxygen groups under UV irradiation via ultraviolet photoelectron spectroscopy. Thus, we confirmed that for λex ≲ 380 nm, photooxidation processes occurred, which led to chemical modification, thereby lowering the work function in the N-GQDs. The N-GQDs were proved to be highly biocompatible by a cell viability assay using vascular smooth muscle cells. Together with the wide spectral range emission observed in confocal fluorescence imaging, it demonstrated the potential of the N-GQDs for in vitro bioimaging applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
1932-7455
Svazek periodika
125
Číslo periodika v rámci svazku
38
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
21044-21054
Kód UT WoS článku
000704295900032
EID výsledku v databázi Scopus
2-s2.0-85116600513