Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Study of the electric field in a diffuse nanosecond positive ionization wave generated in a pin-to-plane geometry in atmospheric pressure air

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00120966" target="_blank" >RIV/00216224:14310/21:00120966 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1088/1361-6463/abbc3a" target="_blank" >https://doi.org/10.1088/1361-6463/abbc3a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6463/abbc3a" target="_blank" >10.1088/1361-6463/abbc3a</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Study of the electric field in a diffuse nanosecond positive ionization wave generated in a pin-to-plane geometry in atmospheric pressure air

  • Popis výsledku v původním jazyce

    The dynamics of a nanosecond positive ionization front generated in a pin-to-plane geometry in atmospheric pressure air is simulated using a 2D axisymmetric drift-diffusion fluid model. For a 16 mm gap and a sharp pin electrode, the plateau of the applied voltage is varied between 40 and 60 kV and the rise time is varied between 0.5 and 1.5 ns or a DC voltage is applied. The discharge ignition time and the voltage at ignition are shown to depend mostly on the voltage rise time. The connection time, i.e. the time for the ionization wave to ignite, propagate and connect to the plane is shown to strongly depend on both the values of the voltage plateau and rise time. For all cases, the discharge has a conical shape with a maximal radius of about 8 mm as it connects to the grounded plane. The average propagation velocity of the ionization front is found to vary in the range 3.1 to 8.5 mm ns(-1). These values are in rather good agreement with experiments. Temporal evolutions of the electric field are recorded on the symmetry axis at different positions in the gap. At each location, an increase and decrease of the electric field is observed as the ionization front, propagating from the pin to the plane, passes the studied point, in accordance with experimental observations. Finally, for a voltage plateau of 55 kV and a rise time of 0.5 ns, a temporal sampling of 100 ps is shown to be sufficient to capture the dynamics of the electric field during the ionization front propagation when it passes close to the middle of the gap. Conversely, a temporal sampling of 10 ps is required when the ionization wave is close to both electrodes, or during the fast redistribution of the electric field after the connection of the ionization front at the cathode.

  • Název v anglickém jazyce

    Study of the electric field in a diffuse nanosecond positive ionization wave generated in a pin-to-plane geometry in atmospheric pressure air

  • Popis výsledku anglicky

    The dynamics of a nanosecond positive ionization front generated in a pin-to-plane geometry in atmospheric pressure air is simulated using a 2D axisymmetric drift-diffusion fluid model. For a 16 mm gap and a sharp pin electrode, the plateau of the applied voltage is varied between 40 and 60 kV and the rise time is varied between 0.5 and 1.5 ns or a DC voltage is applied. The discharge ignition time and the voltage at ignition are shown to depend mostly on the voltage rise time. The connection time, i.e. the time for the ionization wave to ignite, propagate and connect to the plane is shown to strongly depend on both the values of the voltage plateau and rise time. For all cases, the discharge has a conical shape with a maximal radius of about 8 mm as it connects to the grounded plane. The average propagation velocity of the ionization front is found to vary in the range 3.1 to 8.5 mm ns(-1). These values are in rather good agreement with experiments. Temporal evolutions of the electric field are recorded on the symmetry axis at different positions in the gap. At each location, an increase and decrease of the electric field is observed as the ionization front, propagating from the pin to the plane, passes the studied point, in accordance with experimental observations. Finally, for a voltage plateau of 55 kV and a rise time of 0.5 ns, a temporal sampling of 100 ps is shown to be sufficient to capture the dynamics of the electric field during the ionization front propagation when it passes close to the middle of the gap. Conversely, a temporal sampling of 10 ps is required when the ionization wave is close to both electrodes, or during the fast redistribution of the electric field after the connection of the ionization front at the cathode.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018097" target="_blank" >LM2018097: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of physics D: Applied physics

  • ISSN

    0022-3727

  • e-ISSN

    1361-6463

  • Svazek periodika

    54

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    1-14

  • Kód UT WoS článku

    000595518300001

  • EID výsledku v databázi Scopus

    2-s2.0-85097603706