Structure Inversion Asymmetry and Rashba Effect in Quantum Confined Topological Crystalline Insulator Heterostructures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00122451" target="_blank" >RIV/00216224:14310/21:00122451 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/adfm.202008885" target="_blank" >https://doi.org/10.1002/adfm.202008885</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202008885" target="_blank" >10.1002/adfm.202008885</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure Inversion Asymmetry and Rashba Effect in Quantum Confined Topological Crystalline Insulator Heterostructures
Popis výsledku v původním jazyce
Structure inversion asymmetry is an inherent feature of quantum confined heterostructures with non-equivalent interfaces. It leads to a spin splitting of the electron states and strongly affects the electronic band structure. The effect is particularly large in topological insulators because the topological surface states are extremely sensitive to the interfaces. Here, the first experimental observation and theoretical explication of this effect are reported for topological crystalline insulator quantum wells made of Pb1-xSnxSe confined by Pb1-yEuySe barriers on one side and by vacuum on the other. This provides a well defined structure asymmetry controlled by the surface condition. The electronic structure is mapped out by angle-resolved photoemission spectroscopy and tight binding calculations, evidencing that the spin splitting decisively depends on hybridization and, thus, quantum well width. Most importantly, the topological boundary states are not only split in energy but also separated in space-unlike conventional Rashba bands that are splitted only in momentum. The splitting can be strongly enhanced to very large values by control of the surface termination due to the charge imbalance at the polar quantum well surface. The findings thus, open up a wide parameter space for tuning of such systems for device applications.
Název v anglickém jazyce
Structure Inversion Asymmetry and Rashba Effect in Quantum Confined Topological Crystalline Insulator Heterostructures
Popis výsledku anglicky
Structure inversion asymmetry is an inherent feature of quantum confined heterostructures with non-equivalent interfaces. It leads to a spin splitting of the electron states and strongly affects the electronic band structure. The effect is particularly large in topological insulators because the topological surface states are extremely sensitive to the interfaces. Here, the first experimental observation and theoretical explication of this effect are reported for topological crystalline insulator quantum wells made of Pb1-xSnxSe confined by Pb1-yEuySe barriers on one side and by vacuum on the other. This provides a well defined structure asymmetry controlled by the surface condition. The electronic structure is mapped out by angle-resolved photoemission spectroscopy and tight binding calculations, evidencing that the spin splitting decisively depends on hybridization and, thus, quantum well width. Most importantly, the topological boundary states are not only split in energy but also separated in space-unlike conventional Rashba bands that are splitted only in momentum. The splitting can be strongly enhanced to very large values by control of the surface termination due to the charge imbalance at the polar quantum well surface. The findings thus, open up a wide parameter space for tuning of such systems for device applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
1616-3028
Svazek periodika
31
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
„2008885“
Kód UT WoS článku
000634542200001
EID výsledku v databázi Scopus
2-s2.0-85103413519