Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

About the power pseudovariety PCS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00124463" target="_blank" >RIV/00216224:14310/21:00124463 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://projecteuclid.org/journals/rocky-mountain-journal-of-mathematics/volume-51/issue-6/About-the-power-pseudovariety-PCS/10.1216/rmj.2021.51.2045.short" target="_blank" >https://projecteuclid.org/journals/rocky-mountain-journal-of-mathematics/volume-51/issue-6/About-the-power-pseudovariety-PCS/10.1216/rmj.2021.51.2045.short</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1216/rmj.2021.51.2045" target="_blank" >10.1216/rmj.2021.51.2045</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    About the power pseudovariety PCS

  • Popis výsledku v původním jazyce

    The power pseudovariety PCS, that is, the pseudovariety of finite semigroups generated by all power semigroups of finite completely simple semigroups has recently been characterized as the pseudovariety AgBG of all so-called aggregates of block groups. This characterization can be expressed as the equality of pseudovarieties PCS=AgBG. In fact, a longer sequence of equalities of pseudovarieties, namely the sequence of equalities PCS=J∗CS=JⓜCS=AgBG has been verified at the same time. Here, J is the pseudovariety of all ????-trivial semigroups, CS is the pseudovariety of all completely simple semigroups, J∗CS is the pseudovariety generated by the family of all semidirect products of ????-trivial semigroups by completely simple semigroups, and JⓜCS is the pseudovariety generated by the Mal’cev product of the pseudovarieties J and CS. In this paper, another different proof of these equalities is provided first. More precisely, the equalities PCS=J∗CS=JⓜCS are given a new proof, while the equality JⓜCS=AgBG is quoted from a foregoing paper. Subsequently in this paper, this new proof of the mentioned equalities is further refined to yield a proof of the following more general result: For any pseudovariety H of groups, let CS(H) stand for the pseudovariety of all completely simple semigroups whose subgroups belong to H. Then it turns out that, for every locally extensible pseudovariety H of groups, the equalities of pseudovarieties P(CS(H))=J∗CS(H)=JⓜCS(H) hold.

  • Název v anglickém jazyce

    About the power pseudovariety PCS

  • Popis výsledku anglicky

    The power pseudovariety PCS, that is, the pseudovariety of finite semigroups generated by all power semigroups of finite completely simple semigroups has recently been characterized as the pseudovariety AgBG of all so-called aggregates of block groups. This characterization can be expressed as the equality of pseudovarieties PCS=AgBG. In fact, a longer sequence of equalities of pseudovarieties, namely the sequence of equalities PCS=J∗CS=JⓜCS=AgBG has been verified at the same time. Here, J is the pseudovariety of all ????-trivial semigroups, CS is the pseudovariety of all completely simple semigroups, J∗CS is the pseudovariety generated by the family of all semidirect products of ????-trivial semigroups by completely simple semigroups, and JⓜCS is the pseudovariety generated by the Mal’cev product of the pseudovarieties J and CS. In this paper, another different proof of these equalities is provided first. More precisely, the equalities PCS=J∗CS=JⓜCS are given a new proof, while the equality JⓜCS=AgBG is quoted from a foregoing paper. Subsequently in this paper, this new proof of the mentioned equalities is further refined to yield a proof of the following more general result: For any pseudovariety H of groups, let CS(H) stand for the pseudovariety of all completely simple semigroups whose subgroups belong to H. Then it turns out that, for every locally extensible pseudovariety H of groups, the equalities of pseudovarieties P(CS(H))=J∗CS(H)=JⓜCS(H) hold.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Rocky Mountain Journal of Mathematics

  • ISSN

    0035-7596

  • e-ISSN

    1945-3795

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    58

  • Strana od-do

    2045-2102

  • Kód UT WoS článku

    000772456800012

  • EID výsledku v databázi Scopus

    2-s2.0-85128124278