Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

AOP-helpFinder webserver: a tool for comprehensive analysis of the literature to support adverse outcome pathways development

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00125462" target="_blank" >RIV/00216224:14310/22:00125462 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://academic.oup.com/bioinformatics/article/38/4/1173/6414613" target="_blank" >https://academic.oup.com/bioinformatics/article/38/4/1173/6414613</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/bioinformatics/btab750" target="_blank" >10.1093/bioinformatics/btab750</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AOP-helpFinder webserver: a tool for comprehensive analysis of the literature to support adverse outcome pathways development

  • Popis výsledku v původním jazyce

    Motivation: Adverse outcome pathways (AOPs) are a conceptual framework developed to support the use of alternative toxicology approaches in the risk assessment. AOPs are structured linear organizations of existing knowledge illustrating causal pathways from the initial molecular perturbation triggered by various stressors, through key events (KEs) at different levels of biology, to the ultimate health or ecotoxicological adverse outcome. Results: Artificial intelligence can be used to systematically explore available toxicological data that can be parsed in the scientific literature. Recently, a tool called AOP-helpFinder was developed to identify associations between stressors and KEs supporting thus documentation of AOPs. To facilitate the utilization of this advanced bioinformatics tool by the scientific and the regulatory community, a webserver was created. The proposed AOP-helpFinder webserver uses better performing version of the tool which reduces the need for manual curation of the obtained results. As an example, the server was successfully applied to explore relationships of a set of endocrine disruptors with metabolic-related events. The AOP-helpFinder webserver assists in a rapid evaluation of existing knowledge stored in the PubMed database, a global resource of scientific information, to build AOPs and Adverse Outcome Networks supporting the chemical risk assessment.

  • Název v anglickém jazyce

    AOP-helpFinder webserver: a tool for comprehensive analysis of the literature to support adverse outcome pathways development

  • Popis výsledku anglicky

    Motivation: Adverse outcome pathways (AOPs) are a conceptual framework developed to support the use of alternative toxicology approaches in the risk assessment. AOPs are structured linear organizations of existing knowledge illustrating causal pathways from the initial molecular perturbation triggered by various stressors, through key events (KEs) at different levels of biology, to the ultimate health or ecotoxicological adverse outcome. Results: Artificial intelligence can be used to systematically explore available toxicological data that can be parsed in the scientific literature. Recently, a tool called AOP-helpFinder was developed to identify associations between stressors and KEs supporting thus documentation of AOPs. To facilitate the utilization of this advanced bioinformatics tool by the scientific and the regulatory community, a webserver was created. The proposed AOP-helpFinder webserver uses better performing version of the tool which reduces the need for manual curation of the obtained results. As an example, the server was successfully applied to explore relationships of a set of endocrine disruptors with metabolic-related events. The AOP-helpFinder webserver assists in a rapid evaluation of existing knowledge stored in the PubMed database, a global resource of scientific information, to build AOPs and Adverse Outcome Networks supporting the chemical risk assessment.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Bioinformatics

  • ISSN

    1367-4803

  • e-ISSN

    1460-2059

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    3

  • Strana od-do

    1173-1175

  • Kód UT WoS článku

    000747962400049

  • EID výsledku v databázi Scopus

    2-s2.0-85126279187