AOP-helpFinder webserver: a tool for comprehensive analysis of the literature to support adverse outcome pathways development
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00125462" target="_blank" >RIV/00216224:14310/22:00125462 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/bioinformatics/article/38/4/1173/6414613" target="_blank" >https://academic.oup.com/bioinformatics/article/38/4/1173/6414613</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/bioinformatics/btab750" target="_blank" >10.1093/bioinformatics/btab750</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AOP-helpFinder webserver: a tool for comprehensive analysis of the literature to support adverse outcome pathways development
Popis výsledku v původním jazyce
Motivation: Adverse outcome pathways (AOPs) are a conceptual framework developed to support the use of alternative toxicology approaches in the risk assessment. AOPs are structured linear organizations of existing knowledge illustrating causal pathways from the initial molecular perturbation triggered by various stressors, through key events (KEs) at different levels of biology, to the ultimate health or ecotoxicological adverse outcome. Results: Artificial intelligence can be used to systematically explore available toxicological data that can be parsed in the scientific literature. Recently, a tool called AOP-helpFinder was developed to identify associations between stressors and KEs supporting thus documentation of AOPs. To facilitate the utilization of this advanced bioinformatics tool by the scientific and the regulatory community, a webserver was created. The proposed AOP-helpFinder webserver uses better performing version of the tool which reduces the need for manual curation of the obtained results. As an example, the server was successfully applied to explore relationships of a set of endocrine disruptors with metabolic-related events. The AOP-helpFinder webserver assists in a rapid evaluation of existing knowledge stored in the PubMed database, a global resource of scientific information, to build AOPs and Adverse Outcome Networks supporting the chemical risk assessment.
Název v anglickém jazyce
AOP-helpFinder webserver: a tool for comprehensive analysis of the literature to support adverse outcome pathways development
Popis výsledku anglicky
Motivation: Adverse outcome pathways (AOPs) are a conceptual framework developed to support the use of alternative toxicology approaches in the risk assessment. AOPs are structured linear organizations of existing knowledge illustrating causal pathways from the initial molecular perturbation triggered by various stressors, through key events (KEs) at different levels of biology, to the ultimate health or ecotoxicological adverse outcome. Results: Artificial intelligence can be used to systematically explore available toxicological data that can be parsed in the scientific literature. Recently, a tool called AOP-helpFinder was developed to identify associations between stressors and KEs supporting thus documentation of AOPs. To facilitate the utilization of this advanced bioinformatics tool by the scientific and the regulatory community, a webserver was created. The proposed AOP-helpFinder webserver uses better performing version of the tool which reduces the need for manual curation of the obtained results. As an example, the server was successfully applied to explore relationships of a set of endocrine disruptors with metabolic-related events. The AOP-helpFinder webserver assists in a rapid evaluation of existing knowledge stored in the PubMed database, a global resource of scientific information, to build AOPs and Adverse Outcome Networks supporting the chemical risk assessment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bioinformatics
ISSN
1367-4803
e-ISSN
1460-2059
Svazek periodika
38
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
3
Strana od-do
1173-1175
Kód UT WoS článku
000747962400049
EID výsledku v databázi Scopus
2-s2.0-85126279187