Formal Setting for Period Doubling Bifurcation of Limit Cycles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00131250" target="_blank" >RIV/00216224:14310/23:00131250 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-27082-6_27" target="_blank" >https://doi.org/10.1007/978-3-031-27082-6_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-27082-6_27" target="_blank" >10.1007/978-3-031-27082-6_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Formal Setting for Period Doubling Bifurcation of Limit Cycles
Popis výsledku v původním jazyce
A rigorous description of period doubling bifurcation of limit cycles in autonomous systems of first order differential equations based on tools of functional analysis and singularity theory is presented. It is an alternative approach which is independent of the theory of discrete-time dynamical systems, especially Poincaré sections. Particularly, sufficient conditions for its occurrence and its normal form coefficients are expressed in terms of derivatives of the operator defining given equations. Also, stability of solutions is analysed and it is related to particular derivatives of the operator. Our approach is an adjustment of techniques used by Golubitsky and Schaeffer (Singularities and Groups in Bifurcation Theory: Volume 1. Springer, New York, 1985) in the study of Hopf bifurcation and it can be considered as a theoretical background for calculations presented in Kuznetsov et al. (SIAM J. Numer. Anal. 43:1407–1435, 2006). The normal form of a vector field derived in Iooss (J. Differ. Equ. 76:47–76, 1988) is not needed, since a given differential equation is considered as an algebraic equation. The theory used here concerns Fredholm operators, Lyapunov-Schmidt reduction and recognition problem for pitchfork bifurcation.
Název v anglickém jazyce
Formal Setting for Period Doubling Bifurcation of Limit Cycles
Popis výsledku anglicky
A rigorous description of period doubling bifurcation of limit cycles in autonomous systems of first order differential equations based on tools of functional analysis and singularity theory is presented. It is an alternative approach which is independent of the theory of discrete-time dynamical systems, especially Poincaré sections. Particularly, sufficient conditions for its occurrence and its normal form coefficients are expressed in terms of derivatives of the operator defining given equations. Also, stability of solutions is analysed and it is related to particular derivatives of the operator. Our approach is an adjustment of techniques used by Golubitsky and Schaeffer (Singularities and Groups in Bifurcation Theory: Volume 1. Springer, New York, 1985) in the study of Hopf bifurcation and it can be considered as a theoretical background for calculations presented in Kuznetsov et al. (SIAM J. Numer. Anal. 43:1407–1435, 2006). The normal form of a vector field derived in Iooss (J. Differ. Equ. 76:47–76, 1988) is not needed, since a given differential equation is considered as an algebraic equation. The theory used here concerns Fredholm operators, Lyapunov-Schmidt reduction and recognition problem for pitchfork bifurcation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016943" target="_blank" >EF19_073/0016943: Interní grantová agentura Masarykovy univerzity</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
15th Chaotic Modeling and Simulation International Conference
ISBN
9783031270819
ISSN
2213-8684
e-ISSN
2213-8692
Počet stran výsledku
15
Strana od-do
381-395
Název nakladatele
Springer
Místo vydání
Cham (Switzerland)
Místo konání akce
Athens (Greece)
Datum konání akce
14. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—