Comparative Analysis of Community Detection and Transformer-Based Approaches for Topic Clustering of Scientific Papers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00131468" target="_blank" >RIV/00216224:14310/23:00131468 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-36805-9_42" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-36805-9_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-36805-9_42" target="_blank" >10.1007/978-3-031-36805-9_42</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Analysis of Community Detection and Transformer-Based Approaches for Topic Clustering of Scientific Papers
Popis výsledku v původním jazyce
We are solving the topic clustering problem, where we need to categorize papers with initially available subjects into more consistent and higher-level topics. We approach the task from two perspectives, one is the traditional network science, where we perform community detection on a subject network with the use of Combo algorithm, and the second is the transformer-based top2vec algorithm which uses sentence-transformer to embed the content of the papers. The comparison between the two approaches was conducted using a dataset of scientific papers on computer science and mathematics collected from the SCOPUS database, and different coherence scores were used as a measure of performance. The results showed that the community detection Combo algorithm was able to achieve a similar coherence score to the transformer-based top2vec. The findings suggest that community detection may be a viable alternative for topic clustering when one has predefined topics, especially when a high coherence score and fast processing time are desired. The paper also discusses the potential advantages and limitations of using Combo for topic clustering and the potential for future work in this area.
Název v anglickém jazyce
Comparative Analysis of Community Detection and Transformer-Based Approaches for Topic Clustering of Scientific Papers
Popis výsledku anglicky
We are solving the topic clustering problem, where we need to categorize papers with initially available subjects into more consistent and higher-level topics. We approach the task from two perspectives, one is the traditional network science, where we perform community detection on a subject network with the use of Combo algorithm, and the second is the transformer-based top2vec algorithm which uses sentence-transformer to embed the content of the papers. The comparison between the two approaches was conducted using a dataset of scientific papers on computer science and mathematics collected from the SCOPUS database, and different coherence scores were used as a measure of performance. The results showed that the community detection Combo algorithm was able to achieve a similar coherence score to the transformer-based top2vec. The findings suggest that community detection may be a viable alternative for topic clustering when one has predefined topics, especially when a high coherence score and fast processing time are desired. The paper also discusses the potential advantages and limitations of using Combo for topic clustering and the potential for future work in this area.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
23rd International Conference on Computational Science and Its Applications , ICCSA 2023
ISBN
9783031368042
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
648-660
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Athens
Datum konání akce
3. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001166618800042