Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Phase transitions in a φ4 matrix model on a curved noncommutative space

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00133556" target="_blank" >RIV/00216224:14310/23:00133556 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://arxiv.org/abs/2310.10794" target="_blank" >https://arxiv.org/abs/2310.10794</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0217751X23430029" target="_blank" >10.1142/S0217751X23430029</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Phase transitions in a φ4 matrix model on a curved noncommutative space

  • Popis výsledku v původním jazyce

    In this contribution, we summarize our recent studies of the phase structure of the Grosse-Wulkenhaar model and its connection to renormalizability. Its action contains a special term that couples the field to the curvature of the noncommutative background space. We first analyze the numerically obtained phase diagram of the model and its three phases: the ordered, the disordered, and the noncommutative stripe phase. Afterward, we discuss the analytical derivation of the effective action and the ordered-to-stripe transition line, and how the obtained expression successfully explains the curvature-induced shift of the triple point compared to the model without curvature. This shift also causes the removal of the stripe phase and makes the model renormalizable.

  • Název v anglickém jazyce

    Phase transitions in a φ4 matrix model on a curved noncommutative space

  • Popis výsledku anglicky

    In this contribution, we summarize our recent studies of the phase structure of the Grosse-Wulkenhaar model and its connection to renormalizability. Its action contains a special term that couples the field to the curvature of the noncommutative background space. We first analyze the numerically obtained phase diagram of the model and its three phases: the ordered, the disordered, and the noncommutative stripe phase. Afterward, we discuss the analytical derivation of the effective action and the ordered-to-stripe transition line, and how the obtained expression successfully explains the curvature-induced shift of the triple point compared to the model without curvature. This shift also causes the removal of the stripe phase and makes the model renormalizable.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Modern Physics A

  • ISSN

    0217-751X

  • e-ISSN

    1793-656X

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    32

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    001155883200003

  • EID výsledku v databázi Scopus

    2-s2.0-85177566082