Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reflectors to quantales

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134055" target="_blank" >RIV/00216224:14310/23:00134055 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.fss.2022.08.023" target="_blank" >https://doi.org/10.1016/j.fss.2022.08.023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fss.2022.08.023" target="_blank" >10.1016/j.fss.2022.08.023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reflectors to quantales

  • Popis výsledku v původním jazyce

    In this paper, we show that marked quantales have a reflection into quantales. To obtain the reflection we construct free quantales over marked quantales using appropriate lower sets. A marked quantale is a posemigroup in which certain admissible subsets are required to have joins, and multiplication distributes over these. Sometimes are the admissible subsets in question specified by means of a so-called selection function. A distinguishing feature of the study of marked quantales is that a small collection of axioms of an elementary nature allows one to do much that is traditional at the level of quantales. The axioms are sufficiently general to include as examples of marked quantales the classes of posemigroups, σ-quantales, prequantales and quantales. Furthermore, we discuss another reflection to quantales obtained by the injective hull of a posemigroup.

  • Název v anglickém jazyce

    Reflectors to quantales

  • Popis výsledku anglicky

    In this paper, we show that marked quantales have a reflection into quantales. To obtain the reflection we construct free quantales over marked quantales using appropriate lower sets. A marked quantale is a posemigroup in which certain admissible subsets are required to have joins, and multiplication distributes over these. Sometimes are the admissible subsets in question specified by means of a so-called selection function. A distinguishing feature of the study of marked quantales is that a small collection of axioms of an elementary nature allows one to do much that is traditional at the level of quantales. The axioms are sufficiently general to include as examples of marked quantales the classes of posemigroups, σ-quantales, prequantales and quantales. Furthermore, we discuss another reflection to quantales obtained by the injective hull of a posemigroup.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fuzzy Sets and Systems

  • ISSN

    0165-0114

  • e-ISSN

    1872-6801

  • Svazek periodika

    455

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    22

  • Strana od-do

    102-123

  • Kód UT WoS článku

    000927814400001

  • EID výsledku v databázi Scopus

    2-s2.0-85137913020