A curvature obstruction to integrability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134333" target="_blank" >RIV/00216224:14310/23:00134333 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mathos.unios.hr/mc/index.php/mc/article/view/4572/875" target="_blank" >https://www.mathos.unios.hr/mc/index.php/mc/article/view/4572/875</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A curvature obstruction to integrability
Popis výsledku v původním jazyce
The classical theory of G-structures, which include almost-complex structures, explains the relationship between the curvature of compatible connections and integrability. This note is an effort to understand how the curvature of Riemannian metrics can obstruct the integrability of almost-complex structures. It is shown that certain special complex structures cannot coexist with non-flat constant curvature metrics, and a formal variational realization of these structures is provided. The approach followed here is direct, meaning that it bypasses the classical theory. The idea is to find obstruction equations for the integrability of almost-complex structures by way of Nijenhuis tensor derivatives. These new equations involve the curvature of a torsion-free connection, and reveal the interplay between almost-complex and Riemannian geometries. Curvature scalars to detect non -complexity in the compact case then arise in a natural way.
Název v anglickém jazyce
A curvature obstruction to integrability
Popis výsledku anglicky
The classical theory of G-structures, which include almost-complex structures, explains the relationship between the curvature of compatible connections and integrability. This note is an effort to understand how the curvature of Riemannian metrics can obstruct the integrability of almost-complex structures. It is shown that certain special complex structures cannot coexist with non-flat constant curvature metrics, and a formal variational realization of these structures is provided. The approach followed here is direct, meaning that it bypasses the classical theory. The idea is to find obstruction equations for the integrability of almost-complex structures by way of Nijenhuis tensor derivatives. These new equations involve the curvature of a torsion-free connection, and reveal the interplay between almost-complex and Riemannian geometries. Curvature scalars to detect non -complexity in the compact case then arise in a natural way.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC22-15012J" target="_blank" >GC22-15012J: Hladká a analytická regularita v CR geometrii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Communications
ISSN
1331-0623
e-ISSN
1848-8013
Svazek periodika
28
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
HR - Chorvatská republika
Počet stran výsledku
20
Strana od-do
29-48
Kód UT WoS článku
001012117800003
EID výsledku v databázi Scopus
2-s2.0-85147702711