Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quasi-neutral dynamics in a coinfection system with N strains and asymmetries along multiple traits

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00136440" target="_blank" >RIV/00216224:14310/23:00136440 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00285-023-01977-7" target="_blank" >https://link.springer.com/article/10.1007/s00285-023-01977-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00285-023-01977-7" target="_blank" >10.1007/s00285-023-01977-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quasi-neutral dynamics in a coinfection system with N strains and asymmetries along multiple traits

  • Popis výsledku v původním jazyce

    Understanding the interplay of different traits in a co-infection system with multiple strains has many applications in ecology and epidemiology. Because of high dimensionality and complex feedback between traits manifested in infection and co-infection, the study of such systems remains a challenge. In the case where strains are similar (quasi-neutrality assumption), we can model trait variation as perturbations in parameters, which simplifies analysis. Here, we apply singular perturbation theory to many strain parameters simultaneously and advance analytically to obtain their explicit collective dynamics. We consider and study such a quasi-neutral model of susceptible-infected-susceptible (SIS) dynamics among N strains, which vary in 5 fitness dimensions: transmissibility, clearance rate of single- and co-infection, transmission probability from mixed coinfection, and co-colonization vulnerability factors encompassing cooperation and competition. This quasi-neutral system is analyzed with a singular perturbation method through an appropriate slow-fast decomposition. The fast dynamics correspond to the embedded neutral system, while the slow dynamics are governed by an N-dimensional replicator equation, describing the time evolution of strain frequencies. The coefficients of this replicator system are pairwise invasion fitnesses between strains, which, in our model, are an explicit weighted sum of pairwise asymmetries along all trait dimensions. Remarkably these weights depend only on the parameters of the neutral system. Such model reduction highlights the centrality of the neutral system for dynamics at the edge of neutrality and exposes critical features for the maintenance of diversity.

  • Název v anglickém jazyce

    Quasi-neutral dynamics in a coinfection system with N strains and asymmetries along multiple traits

  • Popis výsledku anglicky

    Understanding the interplay of different traits in a co-infection system with multiple strains has many applications in ecology and epidemiology. Because of high dimensionality and complex feedback between traits manifested in infection and co-infection, the study of such systems remains a challenge. In the case where strains are similar (quasi-neutrality assumption), we can model trait variation as perturbations in parameters, which simplifies analysis. Here, we apply singular perturbation theory to many strain parameters simultaneously and advance analytically to obtain their explicit collective dynamics. We consider and study such a quasi-neutral model of susceptible-infected-susceptible (SIS) dynamics among N strains, which vary in 5 fitness dimensions: transmissibility, clearance rate of single- and co-infection, transmission probability from mixed coinfection, and co-colonization vulnerability factors encompassing cooperation and competition. This quasi-neutral system is analyzed with a singular perturbation method through an appropriate slow-fast decomposition. The fast dynamics correspond to the embedded neutral system, while the slow dynamics are governed by an N-dimensional replicator equation, describing the time evolution of strain frequencies. The coefficients of this replicator system are pairwise invasion fitnesses between strains, which, in our model, are an explicit weighted sum of pairwise asymmetries along all trait dimensions. Remarkably these weights depend only on the parameters of the neutral system. Such model reduction highlights the centrality of the neutral system for dynamics at the edge of neutrality and exposes critical features for the maintenance of diversity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Biology

  • ISSN

    0303-6812

  • e-ISSN

    1432-1416

  • Svazek periodika

    87

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    52

  • Strana od-do

    1-52

  • Kód UT WoS článku

    001188440900001

  • EID výsledku v databázi Scopus

    2-s2.0-85168982841