Destabilization of a seasonal synchronization in a population model with a seasonally varying Allee effect
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135203" target="_blank" >RIV/00216224:14310/24:00135203 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.amc.2023.128331" target="_blank" >https://doi.org/10.1016/j.amc.2023.128331</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2023.128331" target="_blank" >10.1016/j.amc.2023.128331</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Destabilization of a seasonal synchronization in a population model with a seasonally varying Allee effect
Popis výsledku v původním jazyce
Climate change causing large seasonal fluctuations is likely to lead to an increase in the average threshold of the Allee effect as well as an increase in its seasonal variability. In this paper, we show that a seasonally synchronized predator-prey system can be strongly destabilized by these changes in the threshold of the Allee effect. The typical result first leads to two-year and multiyear cycles by the principle of period doubling on a folded Möbius strip, up to the emergence of a chaotic and hyper-chaotic attractor living close to the trivial equilibrium corresponding to the extinction of populations. Moreover, this instability of the ecosystem can be hidden for a long time and the transition to its basin of attraction can occur by external perturbation in a random and irreversible manner. We also reveal a double folding of the 1:1 synchronized cycle manifold inside the corresponding Arnold tongue and hysteresis similar to well-known Duffing oscillator.
Název v anglickém jazyce
Destabilization of a seasonal synchronization in a population model with a seasonally varying Allee effect
Popis výsledku anglicky
Climate change causing large seasonal fluctuations is likely to lead to an increase in the average threshold of the Allee effect as well as an increase in its seasonal variability. In this paper, we show that a seasonally synchronized predator-prey system can be strongly destabilized by these changes in the threshold of the Allee effect. The typical result first leads to two-year and multiyear cycles by the principle of period doubling on a folded Möbius strip, up to the emergence of a chaotic and hyper-chaotic attractor living close to the trivial equilibrium corresponding to the extinction of populations. Moreover, this instability of the ecosystem can be hidden for a long time and the transition to its basin of attraction can occur by external perturbation in a random and irreversible manner. We also reveal a double folding of the 1:1 synchronized cycle manifold inside the corresponding Arnold tongue and hysteresis similar to well-known Duffing oscillator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
1873-5649
Svazek periodika
462
Číslo periodika v rámci svazku
February 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
001081614500001
EID výsledku v databázi Scopus
2-s2.0-85171620067