Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

High-throughput spike detection in greenhouse cultivated grain crops with attention mechanisms based deep learning models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135605" target="_blank" >RIV/00216224:14310/24:00135605 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://spj.science.org/doi/10.34133/plantphenomics.0155" target="_blank" >https://spj.science.org/doi/10.34133/plantphenomics.0155</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.34133/plantphenomics.0155" target="_blank" >10.34133/plantphenomics.0155</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    High-throughput spike detection in greenhouse cultivated grain crops with attention mechanisms based deep learning models

  • Popis výsledku v původním jazyce

    Detection of spikes is the first important step towards image-based quantitative assessment of crop yield. However, spikes of grain plants occupy only a tiny fraction of the image area and often emerge in the middle of the mass of plant leaves that exhibit similar colors as spike regions. Consequently, accurate detection of grain spikes renders, in general, a non-trivial task even for advanced, state-of-the-art deep learning neural networks (DNNs). To improve pattern detection in spikes, we propose architectural changes to Faster-RCNN (FRCNN) by reducing feature extraction layers and introducing a global attention module. The performance of our extended FRCNN-A vs. conventional FRCNN was compared on images of different European wheat cultivars, including ’difficult’ bushy phenotypes from two different phenotyping facilities and optical setups. Our experimental results show that introduced architectural adaptations in FRCNN-A helped to improve spike detection accuracy in inner regions. The mAP of FRCNN and FRCNN-A on inner spikes is 76.0% and 81.0%, respectively, while on the state-of-the-art detection DNNs, Swin Transformer mAP is 83.0%. As a lightweight network, FRCNN-A is faster than FRCNN and Swin Transformer on both baseline and augmented training datasets. On the FastGAN augmented dataset, FRCNN achieved mAP of 84.24%, FRCNN-A 85.0%, and the Swin Transformer 89.45%. The increase in mAP of DNNs on the augmented datasets is proportional to the amount of the IPK original and augmented images. Overall, this study indicates a superior performance of attention mechanisms-based deep learning models in detecting small and subtle features of grain spikes.

  • Název v anglickém jazyce

    High-throughput spike detection in greenhouse cultivated grain crops with attention mechanisms based deep learning models

  • Popis výsledku anglicky

    Detection of spikes is the first important step towards image-based quantitative assessment of crop yield. However, spikes of grain plants occupy only a tiny fraction of the image area and often emerge in the middle of the mass of plant leaves that exhibit similar colors as spike regions. Consequently, accurate detection of grain spikes renders, in general, a non-trivial task even for advanced, state-of-the-art deep learning neural networks (DNNs). To improve pattern detection in spikes, we propose architectural changes to Faster-RCNN (FRCNN) by reducing feature extraction layers and introducing a global attention module. The performance of our extended FRCNN-A vs. conventional FRCNN was compared on images of different European wheat cultivars, including ’difficult’ bushy phenotypes from two different phenotyping facilities and optical setups. Our experimental results show that introduced architectural adaptations in FRCNN-A helped to improve spike detection accuracy in inner regions. The mAP of FRCNN and FRCNN-A on inner spikes is 76.0% and 81.0%, respectively, while on the state-of-the-art detection DNNs, Swin Transformer mAP is 83.0%. As a lightweight network, FRCNN-A is faster than FRCNN and Swin Transformer on both baseline and augmented training datasets. On the FastGAN augmented dataset, FRCNN achieved mAP of 84.24%, FRCNN-A 85.0%, and the Swin Transformer 89.45%. The increase in mAP of DNNs on the augmented datasets is proportional to the amount of the IPK original and augmented images. Overall, this study indicates a superior performance of attention mechanisms-based deep learning models in detecting small and subtle features of grain spikes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008446" target="_blank" >EF16_026/0008446: Integrace signálu a epigenetické reprogramování pro produktivitu rostlin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Plant Phenomics

  • ISSN

    2643-6515

  • e-ISSN

    2643-6515

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    001231155500001

  • EID výsledku v databázi Scopus

    2-s2.0-85191439858