The formal theory of relative monads
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135820" target="_blank" >RIV/00216224:14310/24:00135820 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022404924000732" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022404924000732</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2024.107676" target="_blank" >10.1016/j.jpaa.2024.107676</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The formal theory of relative monads
Popis výsledku v původním jazyce
We develop the theory of relative monads and relative adjunctions in a virtual equipment, extending the theory of monads and adjunctions in a 2-category. The theory of relative comonads and relative coadjunctions follows by duality. While some aspects of the theory behave analogously to the non-relative setting, others require new insights. In particular, the universal properties that define the algebra object and the opalgebra object for a monad in a virtual equipment are stronger than the classical notions of algebra object and opalgebra object for a monad in a 2-category. Inter alia, we prove a number of representation theorems for relative monads, establishing the unity of several concepts in the literature, including the devices of Walters, the j-monads of Diers, and the relative monads of Altenkirch, Chapman, and Uustalu. A motivating setting is the virtual equipment V-Cat of categories enriched in a monoidal category V, though many of our results are new even for V = Set.
Název v anglickém jazyce
The formal theory of relative monads
Popis výsledku anglicky
We develop the theory of relative monads and relative adjunctions in a virtual equipment, extending the theory of monads and adjunctions in a 2-category. The theory of relative comonads and relative coadjunctions follows by duality. While some aspects of the theory behave analogously to the non-relative setting, others require new insights. In particular, the universal properties that define the algebra object and the opalgebra object for a monad in a virtual equipment are stronger than the classical notions of algebra object and opalgebra object for a monad in a 2-category. Inter alia, we prove a number of representation theorems for relative monads, establishing the unity of several concepts in the literature, including the devices of Walters, the j-monads of Diers, and the relative monads of Altenkirch, Chapman, and Uustalu. A motivating setting is the virtual equipment V-Cat of categories enriched in a monoidal category V, though many of our results are new even for V = Set.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
1873-1376
Svazek periodika
228
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
107
Strana od-do
1-107
Kód UT WoS článku
001223882300001
EID výsledku v databázi Scopus
2-s2.0-85189487441