Optimization of laser-driven quantum beam generation and the applications with artificial intelligence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00136155" target="_blank" >RIV/00216224:14310/24:00136155 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.aip.org/aip/pop/article/31/5/053108/3295205/Optimization-of-laser-driven-quantum-beam" target="_blank" >https://pubs.aip.org/aip/pop/article/31/5/053108/3295205/Optimization-of-laser-driven-quantum-beam</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0190062" target="_blank" >10.1063/5.0190062</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of laser-driven quantum beam generation and the applications with artificial intelligence
Popis výsledku v původním jazyce
We have investigated space and astrophysical phenomena in nonrelativistic laboratory plasmas with long high-power lasers, such as collisionless shocks and magnetic reconnections, and have been exploring relativistic regimes with intense short pulse lasers, such as energetic ion acceleration using large-area suspended graphene. Increasing the intensity and repetition rate of the intense lasers, we have to handle large amounts of data from the experiments as well as the control parameters of laser beamlines. Artificial intelligence (AI) such as machine learning and neural networks may play essential roles in optimizing the laser and target conditions for efficient laser ion acceleration. Implementing AI into the laser system in mind, as the first step, we are introducing machine learning in ion etch pit analyses detected on plastic nuclear track detectors. Convolutional neural networks allow us to analyze big ion etch pit data with high precision and recall. We introduce one of the applications of laser-driven ion beams using AI to reconstruct vector electric and magnetic fields in laser-produced turbulent plasmas in three dimensions.
Název v anglickém jazyce
Optimization of laser-driven quantum beam generation and the applications with artificial intelligence
Popis výsledku anglicky
We have investigated space and astrophysical phenomena in nonrelativistic laboratory plasmas with long high-power lasers, such as collisionless shocks and magnetic reconnections, and have been exploring relativistic regimes with intense short pulse lasers, such as energetic ion acceleration using large-area suspended graphene. Increasing the intensity and repetition rate of the intense lasers, we have to handle large amounts of data from the experiments as well as the control parameters of laser beamlines. Artificial intelligence (AI) such as machine learning and neural networks may play essential roles in optimizing the laser and target conditions for efficient laser ion acceleration. Implementing AI into the laser system in mind, as the first step, we are introducing machine learning in ion etch pit analyses detected on plastic nuclear track detectors. Convolutional neural networks allow us to analyze big ion etch pit data with high precision and recall. We introduce one of the applications of laser-driven ion beams using AI to reconstruct vector electric and magnetic fields in laser-produced turbulent plasmas in three dimensions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018097" target="_blank" >LM2018097: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics of Plasmas
ISSN
1070-664X
e-ISSN
1089-7674
Svazek periodika
31
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001233619700003
EID výsledku v databázi Scopus
2-s2.0-85194965403