The dressing field method for diffeomorphisms: a relational framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00136712" target="_blank" >RIV/00216224:14310/24:00136712 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1751-8121/ad5cad" target="_blank" >https://iopscience.iop.org/article/10.1088/1751-8121/ad5cad</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ad5cad" target="_blank" >10.1088/1751-8121/ad5cad</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The dressing field method for diffeomorphisms: a relational framework
Popis výsledku v původním jazyce
The dressing field method (DFM) is a tool to reduce gauge symmetries. Here we extend it to cover the case of diffeomorphisms. The resulting framework is a systematic scheme to produce Diff(M)-invariant objects, which has a natural relational interpretation. Its precise formulation relies on a clear understanding of the bundle geometry of field space. By detailing it, among other things we stress the geometric nature of field-independent and field-dependent diffeomorphisms, and highlight that the heuristic 'extended bracket' for field-dependent vector fields often featuring in the covariant phase space literature can be understood as arising from the Fr & ouml;licher-Nijenhuis bracket. Furthermore, by articulating this bundle geometry with the covariant phase space approach, we give a streamlined account of the elementary objects of the (pre)symplectic structure of a Diff(M)-theory: Noether charges and their bracket, as induced by the standard prescription for the presymplectic potential and 2-form. We give conceptually transparent expressions allowing to read the integrability conditions and the circumstances under which the bracket of charge is Lie, and the resulting Poisson algebras of charges are central extensions of the Lie algebras of field-independent (diff(M)) and field-dependent vector fields.We show that, applying the DFM, one obtains a Diff(M)-invariant and manifestly relational formulation of a general relativistic field theory. Relying on results just mentioned, we easily derive the 'dressed' (relational) presymplectic structure of the theory. This reproduces or extends results from the gravitational edge modes and gravitational dressings literature. In addition to simplified technical derivations, the conceptual clarity of the framework supplies several insights and allows us to dispel misconceptions.
Název v anglickém jazyce
The dressing field method for diffeomorphisms: a relational framework
Popis výsledku anglicky
The dressing field method (DFM) is a tool to reduce gauge symmetries. Here we extend it to cover the case of diffeomorphisms. The resulting framework is a systematic scheme to produce Diff(M)-invariant objects, which has a natural relational interpretation. Its precise formulation relies on a clear understanding of the bundle geometry of field space. By detailing it, among other things we stress the geometric nature of field-independent and field-dependent diffeomorphisms, and highlight that the heuristic 'extended bracket' for field-dependent vector fields often featuring in the covariant phase space literature can be understood as arising from the Fr & ouml;licher-Nijenhuis bracket. Furthermore, by articulating this bundle geometry with the covariant phase space approach, we give a streamlined account of the elementary objects of the (pre)symplectic structure of a Diff(M)-theory: Noether charges and their bracket, as induced by the standard prescription for the presymplectic potential and 2-form. We give conceptually transparent expressions allowing to read the integrability conditions and the circumstances under which the bracket of charge is Lie, and the resulting Poisson algebras of charges are central extensions of the Lie algebras of field-independent (diff(M)) and field-dependent vector fields.We show that, applying the DFM, one obtains a Diff(M)-invariant and manifestly relational formulation of a general relativistic field theory. Relying on results just mentioned, we easily derive the 'dressed' (relational) presymplectic structure of the theory. This reproduces or extends results from the gravitational edge modes and gravitational dressings literature. In addition to simplified technical derivations, the conceptual clarity of the framework supplies several insights and allows us to dispel misconceptions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_010%2F0003229" target="_blank" >EH22_010/0003229: MSCAfellow5_MUNI</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Svazek periodika
57
Číslo periodika v rámci svazku
30
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
84
Strana od-do
1-84
Kód UT WoS článku
001269820800001
EID výsledku v databázi Scopus
2-s2.0-85198730096