Mxene-decorated spinel oxides as innovative activators of peroxymonosulfate for degradation of caffeine in WWTP effluents: Insights into mechanisms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00137730" target="_blank" >RIV/00216224:14310/24:00137730 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1385894724093057" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894724093057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2024.157814" target="_blank" >10.1016/j.cej.2024.157814</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mxene-decorated spinel oxides as innovative activators of peroxymonosulfate for degradation of caffeine in WWTP effluents: Insights into mechanisms
Popis výsledku v původním jazyce
In the frame of the environmental issues related to the efficiency of wastewaters treatment, the generation of advanced oxidation processes (AOPs) by 2D materials appears one of the most promising solutions. In this study, a novel catalytic system for peroxymonosulfate activation (PMS) was designed based on MXene (Ti3C2Tx) decorated with spinel oxides Co3O4, Fe3O4 and CoFe2O4 catalysts. Their efficiency in caffeine (CAF) degradation via PMS activation was assessed. The insertion of spinel oxides inside the multilayer structure of MXene along with their uniform surface decoration was demonstrated by SEM and TEM analyses and it also avoided the aggregation of the magnetic particles, thus increasing their efficiency. Among the different catalysts, the MXene/CoFe2O4 (MXCF) stood out as the most effective, mainly due to the Fe and Co redox cycles. The complete degradation of CAF was achieved in the dark within 10 min at natural pH using 0.2 g/L of MXCF and 0.5 mM of PMS. The novelty of current study lies in the efficient activation of PMS by, for the first time, MXCF in the dark along with mechanistic elucidation of PMS activation. The important role of Co3+/Co2+ and Fe3+/Fe2+ redox cycles alongside surface bound functional groups were highlighted. Radical scavenging and EPR experiments confirmed •OH and 1O2 as the main ROS involved in the CAF degradation. The CAF degradation pathways pointed to hydroxylation and imidazole ring opening mechanisms and MXCF catalyst also exhibited high efficiency in the degradation of sulfamethoxazole and phenol via PMS activation. To further highlight the relevance of the obtained results, treatment of tertiary effluents of wastewaters treatment plant (WWTP) in Bratislava contaminated by CAF exhibited a complete pollutant degradation after 3 h by supplying 0.2 g/L of catalyst and 2 mM PMS in the dark.
Název v anglickém jazyce
Mxene-decorated spinel oxides as innovative activators of peroxymonosulfate for degradation of caffeine in WWTP effluents: Insights into mechanisms
Popis výsledku anglicky
In the frame of the environmental issues related to the efficiency of wastewaters treatment, the generation of advanced oxidation processes (AOPs) by 2D materials appears one of the most promising solutions. In this study, a novel catalytic system for peroxymonosulfate activation (PMS) was designed based on MXene (Ti3C2Tx) decorated with spinel oxides Co3O4, Fe3O4 and CoFe2O4 catalysts. Their efficiency in caffeine (CAF) degradation via PMS activation was assessed. The insertion of spinel oxides inside the multilayer structure of MXene along with their uniform surface decoration was demonstrated by SEM and TEM analyses and it also avoided the aggregation of the magnetic particles, thus increasing their efficiency. Among the different catalysts, the MXene/CoFe2O4 (MXCF) stood out as the most effective, mainly due to the Fe and Co redox cycles. The complete degradation of CAF was achieved in the dark within 10 min at natural pH using 0.2 g/L of MXCF and 0.5 mM of PMS. The novelty of current study lies in the efficient activation of PMS by, for the first time, MXCF in the dark along with mechanistic elucidation of PMS activation. The important role of Co3+/Co2+ and Fe3+/Fe2+ redox cycles alongside surface bound functional groups were highlighted. Radical scavenging and EPR experiments confirmed •OH and 1O2 as the main ROS involved in the CAF degradation. The CAF degradation pathways pointed to hydroxylation and imidazole ring opening mechanisms and MXCF catalyst also exhibited high efficiency in the degradation of sulfamethoxazole and phenol via PMS activation. To further highlight the relevance of the obtained results, treatment of tertiary effluents of wastewaters treatment plant (WWTP) in Bratislava contaminated by CAF exhibited a complete pollutant degradation after 3 h by supplying 0.2 g/L of catalyst and 2 mM PMS in the dark.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023039" target="_blank" >LM2023039: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
1873-3212
Svazek periodika
502
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
157814
Kód UT WoS článku
001365970300001
EID výsledku v databázi Scopus
2-s2.0-85209926546